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ABSTRACT 

Safety network screening is used to select road locations, such as intersections and segments, 
which are identified based on an abnormally high number of expected collisions or an unusually 
high proportion of a certain type of collisions. The most commonly used network screening 
method relies on rigorous safety performance functions (SPFs), which require traffic volume as 
an input. Many cities in Canada, including Saskatoon, currently do not collect traffic volume for 
every single segment within the city limits. The lack of traffic volume for a study network 
severely restricts the applicability of an SPF-based network screening method. On the other 
hand, the binomial and beta-binomial tests, which may be viewed as formal collision diagnosis 
tests, can be utilized to screen a roadway network, even for the roadway segments where traffic 
volume is unavailable. Unfortunately, previous studies that applied these two tests did not 
explicitly define the circumstances under which we can apply one (or both) of the tests. This 
study introduced a statistical test known as the ‘C(α) test’ to determine when we can apply, for 
instance, the beta-binomial test instead of the binomial test to screen roadway networks. This 
study used three years’ (2007-09) collision data from the City of Saskatoon to demonstrate the 
potential benefits of applying the collision diagnosis tests as a network screening tool. We also 
developed collision maps using ArcGIS to visualize the screening results, and to aid governing 
agencies’ decision-making processes in the selection of appropriate safety countermeasures for 
the screened hotspots. 

Keywords: Network Screening, Beta-Binomial test, Overdispersion test, Collision maps, GIS 
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INTRODUCTION 

Road safety is still a major concern for many roadway governing agencies, in spite of significant 
investment being made in the surface infrastructure system in recent years. In Saskatchewan, for 
instance, the number of fatalities per 100,000 licensed drivers was recorded as 21.9 in 2008, 
which is higher than any other province in Canada (Transport Canada, 2011).  

One method of mitigating road safety concerns is summarized in the six-step Roadway 
Safety Management Process (RSMP) in the Highway Safety Manual (HSM) (AASHTO, 2010). 
The first of the six steps (i.e., 1) Network Screening, 2) Diagnosis, 3) Select Countermeasures, 4) 
Economic Appraisal, 5) Prioritize Projects and 6) Safety Effectiveness Evaluation), network 
screening is used to select road locations (e.g., intersections, segments) that show an unusually 
high number or proportion of collisions in the study network. 

One of the most common network screening methods used in practice is the “expected 
collision frequency with Empirical Bayes (EB) adjustment approach” (AASHTO, 2010), that 
screens road locations based on the expected number of collisions estimated by safety 
performance functions (SPFs) coupled with observed collision data. However, the applicability 
of this method depends heavily on the availability of reliable traffic volume information (e.g., 
AADT) for roadway segments in the study network. In Canada, many jurisdictions often lack 
traffic volume information for a substantial number of segments in their governing roadway 
network. For these segments, SPF-based network screening method cannot be applied, simply 
due to the lack of input data (i.e., traffic volume).  

The City of Saskatoon, for instance, collects daily traffic volume (i.e., AADT) for various 
classifications of roadways, such as expressways, freeways, arterials, collectors, and local roads. 
Table 1 shows the number and percentage of segments that contain (or do not contain) traffic 
volume information for each roadway classification. The results are based on the most recent 
three years’ traffic volume data (2007-2009) (City of Saskatoon, 2009). The City of Saskatoon 
has collected daily traffic volume information for more than 50% of road segments classified as 
expressways, freeways uncontrolled access, controlled major arterial, minor arterial, and ramp 
(i.e., 61%, 72%, 56%, 74%, and 71%, respectively) at least once in three years. Several other 
road classifications, however, have recently-collected traffic volume information for less than 
50% of segments. Example road classifications include highways, uncontrolled major arterials, 
major collector, minor collectors, local, and local rural roadways. Notice that even a roadway 
classification like highway, which is used by a relatively high number of motorists, does not 
have recently-collected traffic volume information for many segments in its class (i.e., 69%).  

Figure 1 further illustrates the lack of traffic volume issue for this study’s target network. 
The figure displays traffic volume information for road segments consisting of uncontrolled 
major arterials in the City of Saskatoon. As shown in Table 1, about 56% of road segments in 
this class of roadway do not have AADT information for the most recent three years (2007-
2009), and thus it is not feasible to apply the SPF-based network screening method for the 56% 
of roadway segments classified as uncontrolled major arterials. 
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For the roadways that lack traffic volume information, the binomial test and/or the beta-
binomial (BB) test, which are known formally as collision diagnosis tests, may be used as a 
safety network screening tool since these two tests do not require traffic volume information as 
an input. The two tests use different types of collisions from individual locations as required 
inputs for screening networks, and are known to be more accurate than a simple collision 
frequency method. Notice that the HSM referred to the BB test as the “probability of specific 
collision types exceeding threshold proportion” (AASHTO, 2010). 

Several previous studies (Bahar et al., 2007; Bolduc and Bonin, 1995; Heydecker and 
Wu, 1991; Kononov and Janson, 2002; Kononov, 2002; Lyon et al., 2007; Mollet, 2004; Sayed 
et al., 1997) have already applied one (or both) of these tests to screen various roadway networks 
from different jurisdictions, and showed acceptable levels of success.  

Unfortunately, however, no previous studies have presented a definitive justification, 
based on a quantitative analysis, regarding when and why binomial tests or BB tests are 
applicable for screening a roadway network.  

This study has the following three specific objectives: 

1. To introduce a formal statistical test to justify the use of an appropriate collision 
diagnosis test (i.e., binomial test vs. BB test) to screen a roadway network. 

2. To develop numerical examples to demonstrate the potential usefulness of applying 
the proposed two tests as methods of screening collision hotspots, particularly for 
roadways without traffic volume information. 

3. To develop GIS collision maps that visualize the analysis outcome (i.e., probability 
values) from the proposed network screening method. 

The second section (Study Data) describes the study collision database. The third section 
(Model Development) explains the methodologies used in this study. The fourth section 
(Analysis Results) presents the outcome of the statistical tests used to select the appropriate 
collision diagnosis test for this study network, and presents the results of the network screening. 
The final section (Conclusions) summarizes the major findings. 

STUDY DATA 

The City of Saskatoon is the target city for this study. We used two different databases from two 
different agencies: 

1. The most recent 3 years’ (2007-2009) collision database, supplied by Saskatchewan 
Government Insurance (SGI). 

2. A street network in GIS shape file format, supplied by the City of Saskatoon. 

Collision Database 

SGI has the responsibility of collecting and maintaining a collision database that records the 
collisions that have occurred within Saskatchewan. The SGI collision database is called the 



4 
 

“Traffic Accident Information System (TAIS)”. Among the available ten years’ collision 
information (2000-2009), this study used only the most recent three years’ (2007-2009) 
collisions in order to demonstrate the potential benefits of using the selected collision diagnosis 
tests (i.e., binomial test, BB test) as network screening tools. We used three years’ collision data 
since we noticed a substantial amount of changes in configuration, environment, traffic volumes, 
etc., in the city’s roadway network during the ten year period. 

The collision database includes collisions that occurred at both intersections and roadway 
segments. For illustration purposes, this study focuses only on collisions that occurred on 
roadway segments. In terms of SGI’s coding scheme, there are 15 different collision 
configurations with a total of 6,672 roadway segment collisions, as shown in Table 2. Among the 
15 collision configurations, rear end and side swipe same direction (SSSD) collisions were the 
two most frequent collision configurations, with 36% and 20% of proportions, respectively. This 
study will use these two collision configurations to demonstrate the potential benefits of applying 
the proposed methods in safety network screening. 

Street Network 

To present network screening results spatially, a GIS map presenting Saskatoon’s current 
roadway network is necessary. The City of Saskatoon maintains a GIS base map in a shape file 
format that contains all of the roadways within the city limits. In the file, each roadway segment 
has a common location identifier known as a UGRID; this identifier is used to present the 
location of collisions in SGI’s collision database.  

ArcGIS Desktop (Version 10) is used to visualize the locations of hotspots identified by 
the safety network screening procedure. 

MODEL DEVELOPMENT 

During the last two decades, transportation safety researchers have often used two different 
collision diagnosis tests to investigate the unusually high proportion of a certain type of 
collisions for study locations (e.g., intersections, segments). The two diagnosis tests are: 1) the 
binomial test, and 2) the beta-binomial (BB) test.  

Binomial Test 

Kononov and Janson (2002) were the first to apply the binomial test (a.k.a., the direct diagnosis 
method) to investigate unusual collision patterns at locations where the level of safety was a 
concern. The test has since been applied in a number of roadway safety studies (Kononov, 2002; 
Kononov and Allery, 2004; Masliah and Bahar, 2006; Masliah et al. 2006; Montella, 2010). The 
binomial test assumes that a collision occurrence at a particular location follows a binomial 
distribution with two possible outcomes (i.e., a certain collision configuration or not). This 
method screens, for instance, a road segment that may show an unusually high proportion of a 
certain collision configuration, compared to the proportion of the same collision configuration 
from other locations. The other locations are assumed to be similar to the target location in terms 
of attributes (i.e., road classification). 
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Suppose ݔ௜	is the number of a certain collision configuration, and ݊௜ is the total number 
of collisions observed at the same location i. Further suppose that S represents the total number 
of locations (i = 1, 2, 3, …,S) in our study dataset. The probability of observing ݔ௜ out of ݊௜ total 
collisions can be expressed using the binomial probability mass function: 

,௜݊|݅ݔ)ܲ (̅݌ = ௡೔!
!(݅ݔ௡೔ି)!݅ݔ

1)݅ݔ̅݌ − 0,݅ݔ௡೔ି(̅݌ ≤ ഥ݌ ≤ 1                                                       (1) 

̅݌ = ∑ ݅ݔ
ೄ
೔సభ

∑ ௡೔ೄ
೔సభ

                                                                                                                         (2)                                                                                             

The parameter ̅݌ is the mean proportion of the target collision configuration (xi) in a total 
of S similar locations (a.k.a., reference locations) and it is also considered to be the mean 
probability of observing the target collision configuration (xi) in a total of S reference locations. 
The binomial test assumes that this mean probability (̅݌) remains constant in all reference 
locations. Thus, the probability of observing xi or more collisions out of ni total collisions at 
location i is given by the following equation: 

௜ܲ = ݔ)ܲ ≥ ,݅݊|௜ݔ (̅݌ = 1 − ݔ]ܲ ≤ ௜ݔ) − 1)]                                                                  (3) 

						= 1 −෍
݊௜

!ݔ (݊௜ − !(ݔ

ଵି݅ݔ

௫ୀ଴

௫(1(̅݌) −  ௡೔ି௫(̅݌

The smaller the probability for a particular location i, the more likely it is that the 
expected proportion of the target collision configuration (݌௜= ݔ௜/݊௜) at the location is larger than 
the estimated mean proportion ൫̅݌ = ∑ ௜ௌݔ

௜ୀଵ ∑ ݊௜ௌ
௜ୀଵ⁄ ൯ from reference locations; therefore, the 

location can be regarded as having a higher than expected number of collisions, particularly for 
the target collision configuration. 

Although the binomial test has great appeal (mainly because of its simplicity in 
calculation), this method requires a strong assumption that the mean proportion or probability (̅݌) 
of a particular collision configuration remains constant in all locations. In reality, the proportion 
of a certain collision configuration will likely vary greatly between locations, due to factors such 
as traffic volume, weather condition, and driver behavior, which can vary greatly between 
locations; this will, in turn, create a certain amount of variability in ̅݌ between locations. This 
variability in the proportion of a specific collision configuration is known as ‘overdispersion’ 
(Anderson, 1988; Cox, 1983; Liggett and Delwiche, 2005; Pack, 1986; Young-Xu and Chan, 
2008), and is difficult to model using a binomial distribution. This means if we apply the 
binomial test to a collision dataset that shows a significant amount of overdispersion, the 
estimated probability from this test can reflect a potentially serious bias. In other words, the 
binomial test is only applicable to collision datasets that do not contain a significant amount of 
overdispersion. We will introduce a formal statistical test (i.e., C(α) test) that is designed to 
determine whether a study dataset contains a statistically significant amount of overdispersion.   
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Beta-Binomial Test 

The BB test uses an additional beta distribution to take the overdispersion issues into account in 
a collision database. Heydecker and Wu (1991) introduced this test in the areas of road safety as 
a “two stage model of proportions”. Since then, a number of researchers have applied this test for 
various study purposes (Bahar et al., 2007; Bolduc and Bonin, 1995; Kononov and Janson, 2002; 
Kononov, 2002; Mollet, 2004; Lyon et al., 2007; Sayed et al., 1997).  

The BB test uses the binomial distribution to explain the proportion of a certain collision 
configuration at a target location, and uses the beta distribution to represent the proportion of the 
same collision configuration between reference locations, which is represented as the prior 
information from the reference locations. Unlike the binomial test, the BB test assumes that the 
proportion of a specific collision configuration (݌௜= ݔ௜/݊݅) at a particular location i is not 
constant, rather it varies between locations. For the BB method, equation (1) will be modified 
with varying ݌௜ as:  

,௜|݊௜ݔ)ܲ (௜݌ = ௡೔!
௫೔!(௡೔ି௫೔)!

−௜௫೔(1݌  ௜)௡೔ି௫೔                                                                        (4)݌

As stated, pi will vary between locations following a beta distribution of p as follows: 

(ߚ,ߙ|݌)ܽݐ݁ܤ = ௣ഀషభ(ଵି௣)ഁషభ

஻(ఈ,ఉ)
 ,   where,  0 ≤ ݌ ≤ 1                                                         (5) 

(ߚ,ߙ)ܤ = Г(ఈ)Г(ఉ)
Г(ఈାఉ)

                                                                                                              (6) 

Here, Beta(p|α, β) is the beta prior distribution representing the collision proportion 
information from reference locations. Г represents the gamma function and α and β are two 
positive parameters of the beta prior distribution. The mean, E(݌௜), and variance, Var(݌௜), of the 
beta prior distribution are given by: 

(௜݌)ܧ = ఈ
ఈାఉ

                                                                                                                      (7) 

(௜݌)ݎܸܽ = ఈఉ
(ఈାఉ)మ(ఈାఉାଵ)

                                                                                                  (8)                                                

The Empirical Bayes (EB) method is then applied to combine the beta distribution with 
the binomial distribution and generate the BB distribution. As a result, the integrated BB 
distribution represents the combination of proportions of a particular collision configuration from 
a specific location and the proportion of the same collision configuration from the reference 
locations. The resulting BB distribution can be expressed as follows: 

(ߚ,ߙ,௜|݊௜ݔ)ܲ = ௡೔!
௫೔!(௡೔ି௫೔)!

஻(ఈା௫೔,ఉା௡೔ି௫೔)
஻(ఈ,ఉ)

                                                                         (9)                                                                                                               
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Two different methods are currently being used to estimate the parameters for the BB 
test: 1) method of moments (MM) and 2) maximum likelihood (ML) method. Although the 
current version of the HSM uses the MM to estimate the parameters, many researchers have 
shown that the ML is the superior parameter estimation method in terms of efficiency, accuracy 
and consistency (Kottas and Lau, 1978; Ramachandran and Tsokos, 2009; Spanos, 1999). In 
addition, many automated data analysis programs such as R-language, STATA, and SAS use the 
ML method as a built-in parameter estimation method. We also note that the ML method is the 
parameter estimation method suggested by Heydecker and Wu (1991), who introduced this 
method to road safety area. Therefore, this study uses the ML method to estimate the parameters 
of the BB test.  

If we let Li be the likelihood of observing xi specific collision configurations out of ni total 
number of collisions at a location i, the likelihood of observing the specific collision 
configuration at all the reference locations, say S, will be ∑ ௜ௌܮ

௜ୀଵ . The log-likelihood function of 
 :௜ becomesܮ

(iܮ)݊ܮ = ݊ܮ ቀ ݊݅!
௫೔!(݊݅ି௫೔)!

ቁ + ߙ)ܤ]݊ܮ + ߚ,௜ݔ + ݊݅ − [(௜ݔ −     (10)                        [(ߚ,ߙ)ܤ]݊ܮ

If equation (10) represents the log-likelihood of observing a specific collision 
configuration at a particular location i, then the log-likelihood of observing the same collision 
configuration at all reference locations can be expressed as follows: 

∑ (iܮ)݊ܮ = ∑ ቀ݊ܮ ቀ ݊݅!
௫೔!(݊݅ି௫೔)!

ቁ + ߙ)ܤ]݊ܮ + ߚ,௜ݔ + ݊݅ − [(௜ݔ − ቁௌ[(ߚ,ߙ)ܤ]݊ܮ
௜ୀଵ

ௌ
௜ୀଵ                (11)       

Since the term ݊ܮ(݊௜! !௜ݔ (݊௜ − ⁄!(௜ݔ ) is not a function of two parameters α and β, it can 
be safety eliminated from equation (11) and the log-likelihood function in equation (12) is 
rewritten as: 

∑ (iܮ)݊ܮ = ∑ ߙ)ܤ]݊ܮ) + ߚ,௜ݔ + ݊݅ − [(௜ݔ − ௌ([(ߚ,ߙ)ܤ]݊ܮ
௜ୀଵ

ௌ
௜ୀଵ                                  (12)                                      

Finally, the parameters α and β can be estimated by maximizing the log-likelihood 
function of equation (12). After applying the EB method to estimate parameters α and β, the 
posterior parameters α’ and β’ can be updated as follows: 

ᇱߙ 	= ߙ	 +  ௜                                                                                                                   (13)ݔ

ᇱߚ 	= ߚ	 + ݊݅ −                                                                                              ௜                                                                                                           (14)ݔ

To determine the level of safety of a target location, we now need a threshold proportion 
since the outcome of the BB test simply represents the probability that the estimated proportion 
of a certain collision configuration at a target location will exceed the (predetermined) threshold 
proportion of the same collision configuration at the reference locations. The most frequently-
chosen threshold proportion in the literature is the median proportion. (Heydecker and Wu, 1991; 



8 
 

Masliah et al., 2006; Masliah and Bahar, 2006; Mollet, 2004).The median proportion (pm) of a 
certain collision configuration from the reference locations can be estimated as follows: 

∫ ଵ݌݀(ߚ,ߙ|݌)ܽݐ݁ܤ
௣m

= 0.5                                                         (15) 

The probability that the proportion (pi) of a particular collision configuration at a certain 
location is greater than the median proportion (pm) in the reference locations is estimated using 
the posterior parameters α’ and β’ and can be expressed as follows: 

௜݌)ܲ > 	 	1	௜,݊݅)=ݔ|௠݌ − ௠݌)ܽݐ݁ܤ  ᇱ)                                                                     (16)ߚ,ᇱߙ,

As the estimated probability becomes larger, the higher the chance of the target location 
having a proportion of the target collision configuration beyond the median proportion of the 
same collision configuration from the reference segments. 

Overdispersion Test 

As discussed, a binomial method is not the appropriate collision diagnosis test (thus not the 
proper network screening method) for collision databases that contain overdispersion. To 
investigate whether a collision dataset contains a statistically significant amount of 
overdispersion or not, Tarone (1979) introduced the ‘C(α) test’ (a.k.a., Tarone’s Z-statistic). 
Several studies including Young-Xu and Chan (2008) recommended the ‘C(α) test’ as one of the 
most reliable overdispersion tests. The test statistic is formulated as follows: 

ܼ = 	
∑ ൜

మ(ష೙೔೛݅ݔ)

೛(೛షభ) ൠି∑ ௡೔ೄ
೔సభ

ೄ
೔సభ

ටଶ∑ ௡೔(௡೔ିଵ)ೄ
೔సభ

݌, = ∑ ݅ݔ
ೄ
೔సభ

∑ ௡೔ೄ
೔సభ

                                                                    (17) 

Tarone (1979) and Young-Xu and Chan (2008) clearly showed that Tarone’s Z-statistic 
follows an asymptotic normal distribution with the null hypothesis in favor of a binomial 
distribution. Thus, for a particular collision dataset, if the value of Z-statistics exceeds the critical 
value at the 95% confidence level, the collision dataset is considered to be overdispersed and the 
null hypothesis will be rejected. The next section will discuss the outcome of all the analyses, 
including the ‘C(α) test’. 

ANALYSIS RESULTS 

This study focuses on roadway segments in uncontrolled major arterials and will make use of the 
two most frequent collision types (i.e., rear end and side swipe same direction (SSSD)). Before 
applying the two tests (i.e., binomial and BB tests), we performed the ‘C(α) test’ to check 
whether the selected collision dataset shows statistically significant overdispersion or not. If 
overdispersion is statistically significant, the BB test should be applied as an appropriate 
screening method. Table 3 contains the results of the ‘C(α) test’ (see the column Tarone’s Z-
statistic and corresponding p-value). If the p-value is less than 0.05, it means that the study 
dataset contains a significant amount of overdispersion at the 95% confidence level. Table 3 
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shows, in general, that the two different types of collision configuration (i.e., rear end and SSSD) 
contain statistically significant overdispersion for the three year study period (2007-2009), with 
the exception of the 2008 SSSD collision dataset.  

Based on the ‘C(α) test’ results, the BB test was selected as the appropriate network 
screening method for the majority of our collision datasets. A total of seven collision datasets, 
including four rear-ends and three SSSDs, were analyzed using the BB test.  

To show an example calculation, we estimated probability values using the BB test.  
Based on the estimated probabilities, Table 4 shows the top 20 riskiest roadway segments 
classified as uncontrolled major arterials in the City of Saskatoon. As an example, we show the 
analysis results using the three-year total collisions (2007-2009) for the two target collision 
configurations (i.e., rear end and SSSD). For rear end collisions, for instance, there is almost a 
100% chance that the top five segments (i.e., shaded cells under Rear End Collision in Table 4) 
will experience a higher than median proportion of this collision configuration, as compared to 
the reference segments. Similarly, the top five riskiest segments under SSSD collisions have a 
greater than 88% chance of experiencing a higher than median proportion of this collision 
configuration, as compared to the reference segments. 

To visualize the study results, we used ArcGIS Desktop Version 10.0 to display the 
estimated probabilities of two different collision configurations spatially on a collision map. 
Figure 2 and 3 shows the estimated probabilities of rear end collisions and SSSD collisions that 
exceed the median proportion of the same collision configurations from all reference segments 
on the uncontrolled major arterials. From both figures, we can observe that red lines represent 
road segments with high probabilities (i.e., 75% - 100%), and green lines represent road 
segments with low probabilities. As a result, the red segments may be regarded as potentially 
hazardous locations in terms of the two target collision configurations.  

CONCLUSIONS 

The main findings of this study are summarized as follows: 

1) As stated by Bahar et al. (2007) and Mollet (2004), the major advantage of the proposed 
network screening method (e.g., binomial test, BB test) is its capability of screening roadway 
networks without traffic volume information. The collection of traffic volume (AADT) 
information for a vast road network often consumes valuable resources and time. Therefore, 
the network screening method proposed in this study can be viewed as the proper choice, 
particularly for roadway locations where traffic volume information is not readily available. 

2) Previous studies did not clearly explain the circumstances under which we can apply the BB 
test instead of the binomial test. This study introduced a formal statistical test known as the 
‘C(α) test’ to determine the amount of overdispersion in a collision dataset, which determines 
whether or not the BB test should be applied. All of the collision datasets (except the 2008 
SSSD collision dataset) in this study contain a significant amount of overdispersion; in this 
circumstance, the BB test can be regarded as a more appropriate network screening method 
than the binomial test. 
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3) Table 4 and Figures 2 and 3 show roadway segments that have been identified as locations 
with an unusually high proportion of target collision configurations (i.e., rear end or SSSD). 
These results could assist public agencies, such as Saskatchewan Government Insurance, to 
identify roadway segments where safety countermeasures (that target a specific collision 
configuration) can be implemented. 

4) ArcGIS was used in this study to display the analysis results spatially in a collision map. The 
spatial presentation of the test results (i.e., probability values) for each segment in Figures 2 
and 3 provides an efficient way of visualizing the study results. This information can help 
transportation engineers and public agencies to determine the best locations for implementing 
specific safety countermeasures more efficiently. 
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Table 1: The City of Saskatoon’s AADT Information for Individual Road Classifications 

Roadway 
Classification 

Total Number 
of Segments 

Number of 
Segments with 

AADT 

Number of 
Segments 

without AADT 

Percentage of 
Segments with  

AADT  

Percentage of 
Segments 

without AADT  
Expressway 126 77 49 61% 39% 

Freeway 
Controlled Access 54 39 15 72% 28% 

Highway 107 33 74 31% 69% 
Controlled  

Major Arterial 140 78 62 56% 44% 

Uncontrolled 
Major Arterial 602 262 340 44% 56% 

Minor Arterial 546 402 144 74% 26% 
Major Collector 1134 536 598 47% 53% 
Minor Collector 567 161 406 28% 72% 

Local 7003 137 6866 2% 98% 
Local Rural 143 6 137 4% 96% 

Ramp 161 115 46 71% 29% 
Note:  1) Shaded cells represent the target roadway classification for this study. 
2) Segments with AADT represent the segments that have AADT for at least one in three years 
(2007-2009); segments without AADT do not have any AADT for the study period (2007-2009) 
(City of Saskatoon, 2009). 

Table 2: Observed Collisions by Collision Configuration 

Collision Configuration 
Collision Frequency Overall 

Proportion 
(2007-2009) 2007 2008 2009 2007-2009 

Rear End 866 798 706 2370 36% 
Side Swipe Same Direction 466 468 391 1325 20% 
Fixed or Movable Object  306 287 268 861 13% 

Right Angle 154 172 137 463 7% 
Lost Control Right Ditch 163 117 127 407 6% 

Left Turn Straight Opposite Direction 90 85 107 282 4% 
Lost Control Left Ditch 64 68 59 191 3% 

Side Swipe Opposite Direction 85 59 38 182 3% 
Left Turn Straight 57 54 55 166 2% 

Head On 47 36 30 113 2% 
Lost Control Right Ditch to Left Ditch 29 31 32 92 1% 

Right Turn Same Direction 25 31 24 80 1% 
Left Turn Straight Same Direction 24 15 19 58 1% 

Right Turn Passing 11 19 12 42 1% 
Left Turn Passing 17 8 15 40 1% 

Note: Shaded cells represent the two most frequent collision configurations. 
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Table 3: Overdispersion Test Results for the Study Collision Database 

Roadway 
Classification 

Collision 
Configuration 

Collision 
Year 

Number of 
Collisions 

Tarone's Z 
Statistic P-value 

Uncontrolled Major 
Arterial  

Rear End 
Collision 

2007 285 9.50 0.00 
2008 316 4.25 0.00 
2009 245 11.43 0.00 

2007-2009 846 23.69 0.00 

Side Swipe Same 
Direction 
Collision 

2007 134 2.75 0.01 
2008 147 -0.24 0.81 
2009 121 3.31 0.00 

2007-2009 402 4.07 0.00 
Note: Shaded cells represent the collision dataset that contains statistically significant 
overdispersion at the 95% confidence level. 
 

Table 4: Network Screening Results for the Top 20 Segments 

Collision Year (2007-2009) 
Uncontrolled Major Arterial Segments 

Rear End Collisions Side Swipe Same Direction Collisions 
Segment ID Estimated Probability Segment ID Estimated Probability 

SKH7-1 100.00% SKH3-3 95.30% 
SKB7-1 99.99% SKG7-93 89.54% 
SKC9-9 99.57% SKE8-49 88.09% 

SKG8-35 99.57% SKF7-103 88.02% 
SKH9-50 99.20% SKL9-4 88.00% 
SKJ8-74 97.42% SKN9-68 85.37% 
SKB8-26 95.84% SKG7-108 84.95% 
SKG2-25 95.84% SKG4-40 83.58% 
SKN6-13 95.84% SKG7-90 82.75% 
SKL10-1 95.79% SKJ9-78 80.23% 
SKG5-32 95.04% SKH1-2 80.23% 
SKN6-5 95.04% SKG1-8 80.23% 

SKG5-37 95.04% SKF5-4 80.23% 
SKE7-68 95.04% SKG2-20 75.08% 
SKH7-10 94.19% SKN5-27 75.08% 
SKD5-1 93.45% SKL11-5 75.08% 
SKJ1-4 93.08% SKJ8-55 72.91% 
SKH9-2 91.38% SKD5-1 72.72% 

SKG7-100 91.38% SKG7-77 71.93% 
SKL9-12 90.76% SKE7-15 71.93% 

Note:  Shaded cells represent the top five riskiest segments for each collision configuration. 
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Figure 1: AADT Information for Road Segments on Uncontrolled Major Arterials in the City of Saskatoon 
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Figure 2: BB Test Results for Rear End Collisions on Uncontrolled Major Arterials 
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 Figure 3: BB Test Results for Side Swipe Same Direction Collisions on Uncontrolled Major Arterials 


