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Abstract 

Safety practitioners are benefiting from an increasing volume of research that quantifies collision 

prediction so that a single and precise collision frequency can often be calculated.  However, 

decision-makers are often interested in determining two additional qualities of a safety analysis: 

accuracy, and the worst-case (and/or best-case) scenario.  Though the discussion of variability 

often removes the possibility of a single precise answer, the examination of errors can quantify 

the confidence associated with an analysis and therefore greatly increase the defensibleness of 

an analysis and the soundness of any decisions based thereon (particularly in economic 

applications). Furthermore, where error can be quantified, there is an opportunity for the safety 

professional to justify departing from the mean predicted values based on their expertise and 

experience, as well as a deep knowledge of the relevant research and underlying data sets. 

This paper presents three methods of discussing uncertainty, or variability, in safety analyses.  

The application of this information in conducting comparison studies of alternative intersection 

control is highlighted in a case study that demonstrates how the confidence and defensibleness 

of safety analyses is improved.  These methods present a practical continuation to Highway 

Safety Manual processes and can serve to enhance an agency’s safety policies. 
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Introduction 

Much effort has been expended in developing methodologies for calculating very precise 

collision frequencies.  These efforts enable decision makers to achieve sound, objective, and 

defensible decisions when investing in public infrastructure in a manner that affects public 

safety.  The recent publication of the Highway Safety Manual (HSM) (1) has achieved a much-

sought-after goal of providing a centralized and standardized safety analysis methodology for 

several types of studies.  The HSM has balanced considerations of practicality with scientific 

and statistical rigour in order to generate a tool that is functionally useful in the majority of 

situations encountered by safety analysts.  Achieving this balance is a challenging endeavour. 

Over time, some critical weaknesses of simpler methodologies have been addressed such as 

the effects of regression-to-the-mean (RTM) and of fluctuations in traffic volume.  Estimates of 

expected and predicted safety performance1 have therefore become much more reliable.  

Though many publications include standard errors and dispersion parameters, discuss the 

concept of confidence intervals, underscore objectivity, and recognize the error inherent in 

models founded upon historical collision frequencies, no methodology was found that guides 

analysts through a safety study while including the errors associated with each step of the 

process.  This important element of safety analyses – a pervasive treatment of variability – has 

yet to be widely embraced in practice or emphasized in central documents. 

Decision makers are instinctively aware of the variability uncertainty2 of calculations of safety 

performance that are precise but without reporting the associated error.  As a hypothetical 

example, one might ask oneself “What is the chance that there will be exactly 26.485 

fatal+injury collisions over the next 30 years as predicted by the results of this safety analysis?”  

Collisions are rare and random phenomenon (AASHTO, 1); there must therefore be some 

variability around the mean result.  But without a quantifiable measure of the range of 

statistically probable results, there is clear ambiguity regarding the degree of confidence one 

should have in a single mean result, and thus, often, hesitation (or even refusal) to make 

important decisions based on estimated future safety performance. 

Statistical measures of variability have not been entrenched into practice in part because of the 

difficulty of accurately modeling a system as complex as safety.  Hauer aptly stated that “the 

statistical interpretation of observational studies is messy, involves ambiguity, may require 

judgement and, in general, does not provide the intellectual pleasures of clear logic, systematic 

deduction and incontrovertible proof.” (3)  Although measures of variance, confidence intervals, 

etc. give the impression of certain knowledge of the variability, this is not so.  The three 

techniques presented in this paper explore some of these “messy” uncertainties surrounding 

safety analyses: 

                                                           
1
 ‘Expected’ refers to results where site-specific historical safety performance has been factored into the analysis 
though the empirical Bayes method, whereas ‘predicted’ results are exclusively based on the model itself. 
 
2
 Variability uncertainty is defined as “the uncertainty due to inherent variability,” such as expected fluctuations in 
results that may follow a known probability distribution.  This is different from another type of uncertainty that is “the 
uncertainty due to the imperfection of our knowledge, which may be reduced by more research and empirical efforts,” 
or simply a lack of understanding.  (Walker, 2) 
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1) Distribution of residuals, which can improve the reliability and confidence of results; 

2) Consideration of multiple models, which can address situations where no single 

methodology or model accurately reflects the scenario under consideration; and  

3) Use of engineering/expert judgement to incorporate factors that are not clearly 

recognized, measured, understood, and explained by models. 

They are also intended to be easily applicable by only requiring the model attributes of mean 

and variance (or standard error), which are routinely published, as opposed to more advanced 

techniques that may require more in-depth knowledge of the underlying data sets and higher-

level statistical treatments.  

Distribution of Residuals 

Many sources of variability exist in safety studies.  Quantifiable variability – RTM, known trends, 

observable model bias, crash cost subsets and variants, etc. – should be explicitly accounted 

for within a methodology3. 

To build a confidence interval about a mean predicted value, the mean is multiplied by the 

Multiple of Standard Error (MSE) of the desired confidence interval.  Table 3-3 of the HSM (3) 

assigns low, medium, and high levels of confidence as follows: 

• Low level of confidence: confidence interval of 65%-70%, MSE = 1 

• Medium level of confidence: confidence interval of 95%, MSE = 2 

• High level of confidence: confidence interval of 99.9%, MSE = 3 

Although a “high” level of confidence is perceptively the ideal, the 95% confidence interval has 

been accepted in practice as providing a sufficient measure of variability for project-level safety 

analyses4.  Moreover, it still communicates an appreciation for the error inherent to the process, 

and provides a more realistic basis for a worst-case scenario analysis.  Another MSE of interest 

is ±1.5, corresponding to thresholds for LOSS (Level of Service of Safety) analysis, a process 

proposed for quantifying collision reduction potential (Kononov, 4). 

But at which stage of the process should the MSE be applied?  There are quantified and 

published measures of error when applying SPFs (safety performance functions), CMFs (crash 

modification factors), calibration factors, when applying the EB (empirical Bayes) method, when 

calculating safety indices, and at other stages of the process.  There could be situations where 

there is a very large standard error with a particular CMF and a well-developed SPF with a small 

error.  If the MSE was applied to the SPF, the large error associated with the CMF would be 

ignored and thus the confidence interval would be deceptively small.  Conversely, if the MSE 

was applied to the CMF, the error of the SPF would be ignored and the confidence interval 

                                                           
3
 Statistically unquantifiable variability – traffic volumes (how often are AADT values based on a single count day?), 

effective versus actual roadway characteristics, observed trends with insufficient evidence to quantify the effect, 

human factors, etc. – should be treated with sensitivity analyses or engineering judgement. 

4
 A transportation agency may in fact want to set the MSE based on how sensitive a weight they wish to attribute to 

the safety performance component of public infrastructure projects at an overall policy level and/or at the project 
level. 
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would be deceptively large.  The proposed solution is to distribute the MSE equally among the 

variance of each step of the process, and equally to the variances throughout each subdivision 

of each step such that the probability of the product of the probabilities of each step equals the 

desired confidence interval (assuming all events are statistically independent).  For example, 

the product of the three 37% and three 63% confidence intervals yield the 5% and 95% 

confidence levels, respectively.  A list of MSEs by number of steps (or degrees) for confidence 

intervals and total MSEs of interest can be found in Table 1.  An example of a 3-degree 

distribution of residuals is illustrated in Figure 1.  The process is written detailed below for one 

common scenario: calculating the 5% and 95% confidence intervals of the expected (EB) 

collision frequency at a future time. 

1. Determine the Multiple of Standard Error (MSE) for the three-degree 95% confidence 

interval: 0.899.  The first step of the distribution of residuals can be referred to as the �0.05�� �� =
 37% and �1 − �0.05�� �� � =
 63% for lower and upper bounds, respectively.  
Similarly, the second step approximately equal the 14% and 86% confidence intervals. 

2. Calculate the mean (maximum likelihood, denoted as ML) predicted collision frequency, �� at time �� at maximum likelihood, ��,��,��. 
3. Calculate the first degree upper and lower confidence intervals for the predicted model 

results: ��,��,��% = ��,��,�� + 0.899� !,��,��, and ��,��,�"% = ��,��,�� − 0.899� !,��,�� 
4. Calculate the maximum likelihood of the expected (empirical Bayes) collision frequency 

at time t1 using the first degree confidence intervals: �#,��,�� = �$�%��,��,��%& + �1 − $���'�, where $ = ��(�)�%∑ !,+�,,-%& and �'	is the 
observed crash frequency.  The lower confidence interval is similarly calculated, 

replacing ��,��,��% by ��,��,�"%. 
5. Calculate the upper and lower confidence intervals of the expected collision frequency at 

t1, �#,��,/�% and �#,��,�0%, by adding 0.899� 1,+�  for the upper limit and by subtracting 

0.899� 1,+�  for the lower limit (where � 1,+� = 2%�#,��&�1 − $�  ). 
6. Calculate the upper and lower Indices of Effectiveness of the expected collision 

frequency at t1, 3/�%4� and 3�0%4�, by computing the difference between the maximum 

likelihood of the predicted collision frequency at t1, ��,��,��, and the upper and lower 
confidence intervals of the expected collision frequency at t1, �#,��,/�%4� and �#,��,�0%4�, 
then multiply each by the ratio of 

 !,+5,67 !,+�,67. 
7. Calculate the upper and lower confidence intervals of the predicted collision frequency at 

t2, ��,�5,�� ± 0.899� !,+5 . 
8. Calculate the 5% and 95% confidence intervals of the expected collision frequency at t2, �#,�5,9%4� and �#,�5,:9%4�, by adding 3/�%4� for the upper limit and by subtracting 3�0%4� 

for the lower limit. 

In situations where there are two different traffic volume scenarios and two different predicted 

mean values of collision frequency, as shown in Figure 1, an additional step is needed (Step 6, 

above).  The Index of Effectiveness, θ, is defined as the absolute difference between the upper 
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or lower confidence limit and the mean predicted value (AASHTO, 1).  This value is scaled from 

t1 to t2 by the ratio of mean collision frequency of t2 relative to t1.  This step can be treated 

without consideration of variability because there is no calculable variance of the above 

differences and ratios. 

There are several assumptions involved in this procedure.  Firstly, it assumes that all standard 

errors are known with complete certainty.  The variance of most SPFs is calculated as a 

function of a constant dispersion parameter, though this constant also has an associated 

variability at least as a point estimate, if not as a function of a model’s covariates, as noted by 

Miaou and Lord (5).  However, accounting for the variance of the variance is beyond the intent 

of this methodology. 

Secondly, for subdivisions of this process, such as multiplying CMFs, it assumes that the terms 

or factors are independent of each other such that the safety effect of any one is independent of 

the effect of any other – i.e. there is zero covariance or heteroscedasticity.  For example, the 

installation of a red-light camera and at the same time prohibiting right turns on red could easily 

have an effect different than the product of their CMFs.  Although there is general agreement 

that CMFs are often not independent, research into covariances of CMFs and other analysis 

elements is very limited (Gross, 6). 

It is helpful to mention some commonly used standard error equations.  The standard error of 

the EB estimate of expected frequency (Hauer, 7) is: 

� 1 = ;�1 − $��# 
The standard error of SPF calculations with a single dispersion parameter (Gross, 6) is given 

by:  

� ! = 2<��= 
Despite the foregoing discussion on CMF independence, the standard error of a product of 

terms is also useful; from Hunter and Schmidt’s equation for the variance of a triple product of 

independent variables (8), 

�>?@= = �AB= + �>=�%CB= + �?=&�D̅= + �@=� − �AB=�%CB=&�D̅=� 
the general case for the standard error of a product of m factors can be extrapolated to be: 

�∏GHI� = JK�LM= + �M=�N
MO� −K�LM=�N

MO�  

Advantages of this procedure include the ability to account for a variable dispersion parameter 

and the ability to avoid a bias towards one particular source of error.  Disadvantages include the 

assumption of normal distribution of residuals and the additional computation effort. 
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Consideration of Multiple Models 

Situations exist where there are multiple models with varying strengths and weaknesses, and no 

single model is clearly superior to others.  In this case, choosing to apply one single model, 

whether due to policy, personal choice, or desire for simplicity, is contrary to the scientific 

method that considers all valid alternatives.  If a safety analyses reports variability, as discussed 

earlier, one can use the measured degree of variability – i.e. variance – as a measure of relative 

confidence in the models.  It could be appropriate in certain cases that models (including CMFs) 

that do not have a published measure of error can be discarded from consideration since there 

is no method of determining the accuracy of these models. 

For example, a high-quality calibrated SPF may have been developed for a large jurisdiction 

that confidently wrote it into policy as the single model for all its safety analyses.  One site of 

concern is a stretch of road in a mountainous area that represents a very small portion of the 

jurisdiction and that provided little data for the SPF calibration effort.  Another jurisdiction had 

developed a very high-quality SPF specifically for mountainous terrain, though it is obviously not 

local.  Which model is appropriate to use – the local model, or the model that considers the 

unique terrain?  Or, what if the local SPF was able to be calibrated, but its CURE plot (plot of 

cumulative residuals) shows a considerable bias over the exact range of covariates that are of 

interest to the analysis, and the non-local model shows very little bias? 

This comparison of multiple models is similar to a formal meta-analysis of independent safety 

studies, where a weighted average can be calculated by using the inverse variance as the 

weight factor while considering any heteroscedasticity (covariance), such as the methodologies 

discussed by Persaud (9) and de Blaeij et al. (10).  However, the magnitude of covariance 

would be impractically (or impossibly) difficult to quantify, and thus proper qualifiers should 

highlight this methodological weakness.  Furthermore, the calculations are unlikely to be 

independent and should not be referred to as meta-analyses to avoid the impression of such a 

thorough study.  Nevertheless, for the practical purpose of restricting the proposed methodology 

to use of only the widely-available model characteristics of variance and mean, it is assumed 

that covariates and models are independent, and can therefore be combined with a relatively 

simple procedure. 

The inverse variance is most often used as a weighting factor, though the inverse coefficient of 

variation may also be appropriate in some situations.  Equations for weighted mean and 

weighted variance are given by Finch (11): 

L = ∑ �$PQP�MPO�∑ �$P�MPO�  

�= = 1∑ �$P�MPO� RS$P�QP − LP�=TM
PO�  

  



7 

 

Engineering Judgement 

Regardless of statistical and methodological rigour, there is still justification to deviate from 

mean predicted values based on situations such as: 

• detailed knowledge of unique characteristics of the site, their effects on safety, and the 

degree to which they may be reflected in a model (if at all); 

• in-depth comprehension of the characteristics of the models and analysis 

methodologies; 

• discarding outliers; 

• choosing the appropriate confidence intervals at which to report results; 

• assigning different weight factors of a weighted average calculation; 

• to increase confidence in situations where there is a significantly demonstrated public 

and/or political concern; 

• worst-case and best-case scenario analysis; 

• previous experience with safety studies; and 

• to account for known effects that are not explicitly quantifiable. 

Strigini (12) states that “In many cases of stringent safety requirements, this form of engineering 

(or ‘expert’) judgement, i.e., “informal inference from complex evidence,” is the crucial resource 

for the decision maker, for lack of more solid, objective evidence.”  Recognizing the importance 

of engineering judgement, it details many of the pitfalls associated with these sometimes 

ambiguous, quasi-rational conclusions. 

However, where the variability uncertainty has been quantified, this allows a safety practitioner 

to apply their experience and judgement to deviate by a non-arbitrary value based on a desired 

confidence level.  This position is advocated in the HSM (1), in the Guidelines for the Screening 

of Collision-Prone Locations (Bahar, 13), and by Hauer (3), though it is rare to find published 

methods for explicitly quantifying variability.  It allows an educated choice of an appropriate 

point estimate when a single figure is to be reported without a discussion of its variability.  One 

practical application example of engineering judgment in this situation is to adjust a point 

estimate based on patterned bias observed in the CURE (cumulative residual) plot of a safety 

performance function.  See Kononov (14) for a discussion of bias and CURE plots. 

As a second, hypothetical example, picture an urban intersection under stop control that is 

being converted to signal control.  A locally-calibrated intersection-level SPF was developed that 

accounts for traffic volume, setting, and traffic control.  The mean predicted collision frequency 

was calculated with its associated standard error for a future time period, however consideration 

of historical observed collision frequencies (i.e. applying the empirical Bayes method) is not 

applicable due to the change of intersection control.  The site in question has a relatively large 

skew angle, heavy left turns, and a much higher than average number of left-turn collisions.  

Recent research has indicated that large intersection skew angles have a negative safety effect 

in a rural context, but no model has explicitly quantified this effect in an urban setting.  

Therefore, because a single point estimate is required for a subsequent analysis, an analyst 



8 

 

could suggest that the reported collision frequency be at the 68% confidence interval (the mean 

predicted value plus one MSE) instead of simply the mean value of the model. 

A further application of engineering judgement that is likely far underused in practice is the 

selection of target collisions when evaluating past collision frequency or applying these 

observed collisions in the empirical Bayes method.  Target collisions are those that can be 

affected by roadway safety treatments (Izadpanah, 15); they do not include collisions due to 

vehicle malfunctions such as an engine fire or a blown tire where pavement conditions are 

good.  Including these in an empirical Bayes calculation in a situation with very low predicted 

collision frequency may significantly distort results.  Non-target collisions are unrelated to the 

safety performance of a facility and should be removed from any subsequent quantitative 

analysis. 

Two groups of causal factors affect safety performance: those that are recognized, measured, 

understood, and can be explained by models; and those that are not recognized, not measured, 

or not understood (15).  Applying the full extent of meticulously detailed analysis made possible 

through decades of research, while only considering one of these two groups of factors, leaves 

room for much error and bias.  Engineering judgement has a valid role in accounting for this 

second group of elusive factors. 

Case Study: Edmonton Traffic Circles 

In 2009, the City of Edmonton commissioned a rehabilitation study (16) of four traffic circles that 

were originally built in the 1950s.  These four traffic circles were among the highest collision 

locations in the City, and their designs differed significantly from contemporary roundabout 

designs.  The sites were investigated for conversion to modern roundabouts as well as 

signalized intersections, with future safety performance predictions of the two intersection 

control alternatives being a key factor in the final decision. 

At one site, the existing observed collision frequency was approximately 1.5 collisions per week.  

One alternative was to convert the 2-lane roundabout into a partial 3-lane roundabout – i.e. a 

‘3x2’ with two 2-lane entries and two flared 3-lane entries.  The original safety analysis applied 

SPFs for F+I (fatal+injury) and PDO (property-damage-only) collisions for 3-lane roundabouts 

as derived in NCHRP Report 572 (Rodegerdts, 17), without correcting for RTM (regression-to-

the-mean) or local calibration (due to insufficient data).  It predicted a relatively high collision 

frequency of approximately two collisions per week at the 95% confidence interval, shown in 

Table 2.  Results presented a (relatively low) potential for increased collisions.  The client did 

not want to make the significant investment in a modern roundabout if there was a chance, 

albeit small, of an increase in collision frequency at an already high-collision location. 
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Table 2 

Annual Collision Frequencies 

 Collisions/year 

 CI (%) F+I PDO 

Existing  
(2004-08 average) 

n/a 19.3 61.8 

Original Analysis 95 3.1 109.0 

Method 1 95 24.0 102.1 

Method 2 95 23.6 76.4 

Method 3 95 1.4 11.3 

Method 4 95 2.0 12.3 

Weighted Results 
of Methods 1-4 

95 2.6 19.2 

99.7 3.3 24.7 

 

There were a number of doubts regarding the SPFs: the data used to derive the SPF was taken 

from only 3 sites in the U.S., none of which met modern roundabout design guidelines, and all 

exhibited very high collision frequencies; the models had very high dispersion parameters; other 

large roundabouts built recently did not experience the magnitude of collisions predicted by the 

models; and a number of other circular intersections operated elsewhere in the City, such that 

drivers were better conditioned to this category of intersection compared to most other cities.  

Despite these concerns, no formal methodology existed to suggest a feasible alternative 

opinion.  The safety team attempted to apply engineering judgement and proposed that the 

‘worst-case’ results were unrealistically high, though, understandably, the City did not want to 

proceed with reconstruction to a modern roundabout if the existing collision problem could not 

be resolved more convincingly. 

In revisiting the analysis, four collision prediction models were applied: 

1) The 3-lane roundabout SPFs were applied, as in the original analysis, though corrected 

for RTM using the EB (empirical Bayes) method.  The distribution of residuals method 

was then applied, as discussed previously.  The 95% confidence interval was similar to 

that of the original study due to the high number of observed collisions and the high 

dispersion parameters of the models. 

2) Given that the reconstructed roundabout would only have two 2-lane entries, the SPFs 

for 2-lane entries were also applied from the same source, in the same manner, and with 

similar results for the same reasons as with the 3-lane models. 

3) The safety analysis for the signalized intersection alternatives benefited from locally 

calibrated SPFs specific to an urban setting.  The resultant predicted collision 

frequencies were within the expected range for similar intersections.  These were 

factored by CMFs from NCHRP Report 572 (17) for conversion from a signalized 

intersection to a roundabout, and the distribution of residuals method applied.  Due to 

the much lower variance of both the signalized predictions and the CMFs, and to the 
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robustness of the signalized intersection SPFs, results predicted far fewer collisions than 

the first two methods. 

4) SPFs had also been calibrated for a suburban setting as well as an urban setting; the 

setting of the site in question could be argued to fall equally well into either category.  

Thus, the same steps as Method 3 were carried out, and showed similar results. 

With four safety analyses completed showing four different outcomes, all models were 

combined by inverse-standard-error-weighted averaging of the individual results, as presented 

previously.  The overall weighted results were far closer to observed values at other large 

multilane roundabouts in North America.  And although a 95% confidence interval is widely used 

in practice, the 99.7% confidence interval was highlighted for added confidence.  The results of 

this analysis now indicate a collision frequency of approximately two per month, compared to 

the 2-3 collisions per week predicted in the original study.  Considering that the impetus of the 

City’s examination of this intersection was to improve safety at a high-collision location, the 

conclusions of this analysis show that collision frequency and severity would decrease with 

reconstruction to a modern roundabout. 

This case study demonstrates that the application of the distribution of residuals method and the 

consideration of multiple models can serve to enhance safety analyses by quantitatively 

addressing competing concerns of multiple sources of information.  Furthermore, it highlights 

the substantial effects of variability within and between models, which can obviously have a 

significant impact to economic analyses of projects when collision costs are included. 
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Conclusion 

This study explored three techniques for decreasing the uncertainty of safety analyses: 

distribution of residuals, consideration of multiple models, and the use of engineering 

judgement.  A case study highlights the potentially considerable effects of these techniques in 

practice.  They are also intended to be easily applicable by only requiring the model attributes of 

mean and variance (or standard error), which are routinely published, as opposed to more in-

depth knowledge of the underlying data sets.  Therefore, these relatively simple tools are easily 

applied by practitioners in routine analyses.  The examination of variability can quantify the 

confidence associated with an analysis and therefore greatly increase the defensibleness of an 

analysis and the soundness of any decisions based thereon (particularly in economic 

applications).  Finally, these techniques add a more pervasive treatment of variability throughout 

a study, thereby increasing the rigour and reliability of safety analysis methodology. 
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Figure 1 

Distribution of Residuals for Present and Future Scenarios 
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Table 1 

Multiples of Standard Error by Number of Steps 

 

Confidence 
Interval 

Total 
MSE 

Degrees 
of Error 

MSE Per 
Degree 

95.0% 1.960 

1 1.960 

2 1.217 

3 0.899 

4 0.718 

5 0.598 

86.6% 1.500 

1 1.500 

2 0.904 

3 0.656 

4 0.517 

5 0.427 

68.3% 1.000 

1 1.000 

2 0.578 

3 0.410 

4 0.318 

5 0.260 

50.0% 0.674 

1 0.674 

2 0.375 

3 0.261 

4 0.200 

5 0.163 

 

 


