Instrumentation in Red Hill Valley Parkway Providing Data for Long Term Pavement Management

Ludomir Uzarowski, Ph.D., P.Eng., Golder Associates Ltd.
Gary Moore, P.Eng., City of Hamilton
Vimy Henderson, Ph.D., Golder Associates Ltd.

Introduction

- City of Hamilton Red Hill Valley Parkway (RHVP) perpetual pavement constructed 2007
- 7.5 km, 4 lanes (2 lanes each direction), 90 km/hour posted speed limit with controlled access
- Designed for 90 million Equivalent Single Axle Loads (ESAL’s) over 50 years
- Perpetual pavement structure (total 760 mm)

Objectives

- Description of two instrumentation information systems in RHVP pavement
- Use of data and analysis in pavement management

Instrumentation Systems

Pavement Response System

- Verify design parameters and assumptions
- Pressure and moisture gauges in the subgrade
- Asphalt strain gauges at bottom of RBM, lower binder course and surface layers
- Temperature sensors in subgrade, subbase, granular base and each asphalt layer

Traffic System

- Weight of the vehicle/axle, speed, axle pattern
- Traffic loops and weigh-in-motion (WIM) sensors
- Kistler WIM sensors in both northbound lanes
- Piezoelectric sensors in both southbound lanes

Traffic Loading

- Anticipated AADT in 2057 was 100,000
- AADT in 2011 70,000 measured with instrumentation
- Initial growth was 15%, assumed to be 1.8% in design

Pavement Management Aspects

- Instrumentation data intended to verify assumptions made in design and validate predicted performance

Instrumentation Data Analysis

- Traffic data is synchronized with the pavement response data
- Analysis of strains in pavement
- Relationship between induced strains and pressures and loads that cause strains.

Strain in Perpetual Pavement

- Design assumes tensile strains in RBM < 70 µε and compressive strain in subgrade < 200 µε
- Measured tensile strain in RBM < 50 µε, generally < 20 µε during rush hour
- Measured compressive strain in subgrade < 100 µε

Traffic Loading

- Anticipated AADT in 2057 was 100,000
- AADT in 2011 70,000 measured with instrumentation
- Initial growth was 15%, assumed to be 1.8% in design

Strain in Perpetual Pavement

- Design assumes tensile strains in RBM < 70 µε and compressive strain in subgrade < 200 µε
- Measured tensile strain in RBM < 50 µε, generally < 20 µε during rush hour
- Measured compressive strain in subgrade < 100 µε

Cost Analysis

- LCCA for RHVP and Linc
- Including actual cost of Linc rehabilitation in 2011