

## Introduction

- Changing environmental conditions are causing storm events with larger volumes of precipitation than in past
- Drainage is a key factor in performance of rigid and flexible pavement
- Aspects of drainage:
  - Surface crossfall
  - Urban or rural cross-section and associated drainage systems
- Impermeable pavements typically have impermeable surface with < 8 % voids, and base and subbase layers without excess fines
- Open Graded Drainage Layers (OGDL) can be included between impermeable surface and granular base

## **Open Graded Drainage Layer**

- Open Graded Drainage Layer (OGDL) requires sufficient void content (25 to 50 %), porosity and crossfall to drain through connected voids (pores) • Applicable for municipal and provincial applications, urban or rural, various
- traffic levels
- Current material alternatives for OGDL: Unbound granular material, asphalt stabilization, cement stabilization
- OGDL is typically 100 mm thick (OPSD 207.041).

### **Objectives**

- Drainage of water that infiltrates pavement surface layers
- Support of pavement surface layers

### Challenges

- Outlets along edge of pavement must be well constructed and maintained
- Portion of surface voids of OGDL are typically filled when a concrete pavement surface is used
- Improperly designed, constructed and maintained OGDL can trap moisture causing noor performance



# **Use of Pervious Concrete as an Open Graded Drainage Layer**

## in Pavement Structures

Ludomir Uzarowski, Ph.D., P.Eng., Golder Associates Ltd. Carlos Midence, B.A.Sc., M.B.A., Lafarge Canada Inc. Tim Smith, M.Sc.Eng., P.Eng., Lafarge Canada Inc. Vimy Henderson, Ph.D., Golder Associates Ltd.

## **Open Graded Drainage Layer** Alternatives

### **Unbound Granular OGDL**

- Poor construction platform due to lack of stability
- Poor support capacity can cause pavement performance problems
- Performs less consistently than stabilized OGDL (greater presence and fluctuation of moisture)

### **Asphalt Stabilized OGDL**

- Contains 1.8 to 3 % Asphalt Cement (AC)
- Can be a poor construction platform as surface may deform
- Durability can be lost due to moisture damage
- Development of deformation leads to inconsistent support and premature distresses

### **Cement Stabilized OGDL**

- Provides rigid surface for construction and even support for overlying pavement structure
- Requires curing period for sufficient strength gain of cement (MTO requires a minimum of 48 hours)

## **Pervious Concrete**

- High void content concrete material (15 % to 25 %)
- Surface layer over reservoir storage base layer
- Pavement and stormwater infrastructure
- Maintains natural water cycle in urban landscape
- Low Impact Development

## **Low Compaction Pervious Concrete** (Hydromedia)

- Low Compaction Pervious Concrete (LCPC) addresses observed problems of earlier pervious concrete mix designs in Canada
- High slump for easier placement
- Meets current MTO permeability capacity standards for pervious concrete
- Can meet MTO OGDL requirements for void content



## Low Compaction Pervious Concrete for Open Graded Drainage Layer

- Hydromedia can meet and exceed ODGL void content and drainage requirements in Ontario
- In comparison to cement stabilized OGDL, Hydromedia offers increased strength and efficient construction
- Increased strength by use of low compaction pervious concrete could reduce pavement structure thickness
- pavement structure and may reduce thickness requirements of other layers
- OGDL with low compaction pervious concrete has potential benefits for overall • Void sizes in low compaction pervious concrete can be altered by using different sized aggregate
- With more small voids rather than few large voids, the tendency of surface concrete paste to fill the voids can be decreased
- Reduced risk of poor OGDL performance compared to stabilized OGDL

## voids is decreased

- Evaluate potential to reduce pavement structure layer thicknesses when pervious concrete is used as OGDL
- Cost comparison of OGDL alternatives including pervious concrete
- OGDL can improve pavement performance with proper design and construction
- Low compaction pervious concrete can address current challenges in using OGDL such as:
  - Consistency and ease of placement Effective construction platform
- Additional strength for pavement structure

Engineering, University of Waterloo





Characteristics similar to cement stabilized OGDL

• Utilized at the St. Louis-Lambert International Airport from 1995-1997.

## **Future Work**

• Evaluate extent of reduction in voids filled with surface concrete when size of

## Summary

## References

- OPSS 320 Construction Specification for Open Graded Drainage Layer
- Henderson, V. (2012). Evaluation of the Performance of Pervious Concrete Pavement in Canada. Waterloo, Ontario: Department of Civil and Environmental