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Abstract 
 
The paper presents the issues and strategies involved in developing an agent-based multimodal 
network simulation model for the Greater Toronto and Hamilton Area (GTHA). The model was 
developed by using a Java-based open source simulation platform: MATSim. The issues and 
strategies presented utilize a geocoded automobile network and General Transit Feed 
Specification (GTFS) data of multiple transit agencies within the study area. While network 
simulation model for automobile network is common, an integrated multimodal network that 
combines auto and transit network (physical network and daily transit schedules) has not been 
developed for large study area, such as the GTHA by anyone. A key challenge is to integrate the 
GTFS data seamlessly in the multimodal framework. The GTFS data allowed meshing the auto 
network and the transit network together, creating a fully functioning multimodal network. The 
main challenge associated with this task is the determination of network resolution. The auto 
network is at times at too low of a resolution relative to the transit network, while the transit 
network often contained too much detail to be relevant for traffic simulation for a region as large 
as the GTHA. The paper presents guidelines and example of resolving these issues and 
overcoming the challenges.  
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1. Introduction 
 
The Greater Toronto and Hamilton area (GTHA) is situated to the north west of Lake Ontario in 
the province of Ontario, forming Canada’s largest urban region. The GTHA’s current population 
is over 6 million, with projected growth to approximately 8.6 million by 2031 [1]. The GTHA, as 
shown in Figure-1, has eight local transit systems and a regional transit service operating under 
the administration of Metrolinx, a provincial government agency that was created to improve the 
coordination and integration of different modes of transportation in the region. Metrolinx, in 
their regional transportation plan for the GTHA, The Big Move [1], have identified a number of 
challenges facing the region as it continues to grow. The combination of population growth, 
auto-centric development, insufficient investment in transportation infrastructure and 
disconnected transit services providers as factors contributing to increased reliance on cars, 
which in turn creates congestion.  These issues all indicate that an increase in transportation 
infrastructure and public transit spending are required such that the GTHA remain an 
economically competitive, attractive, vibrant and healthy region. This in turn raises the question 
of where resources should be allocated such that they will have the most benefit. This question 
highlights the importance of transportation planning and modelling in order to understand the 
trade-offs between potential infrastructure improvements.  
 

 
 

Figure-1 The Greater Toronto and Hamilton Area (GTHA) [1] 
Traditional transportation planning approaches apply an aggregate four-stage model to mimic   
individuals’ travel choices within urban regions. These aggregate models allow for planners and 
engineers to answer simple questions about the impact that potential changes or polices might 
have on the transportation system. Traditional models are not capable of effectively testing 
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complex policies, as these models do not provide sufficient level of detail. Therefore interest has 
grown in agent-based approaches, permitting more complex questions to be answered. These 
agent based approaches track individuals’ trips with unique origins and destinations; a 
disaggregate approach which more accurately reflects population heterogeneity with respect to 
route choices.  
 
Historically, the four-stage model is used by transportation planners to answer policy questions 
with respect to travel behaviour. This modelling procedure is limited by the use of aggregate 
zone based nature and is thus ill suited to answering detailed questions about specific policies. It 
is clear that by considering daily travel-activity chains or tours, it is possible to represent travel 
behaviour more accurately when compared to modelling peak period trips only. Daily activity-
travel chains can easily be modelled in terms of chain of choices made by the travellers for 
different travel decisions, e.g. time of day choice, mode of travel choice, destination choice, trip 
purpose choice, etc. Such chain of choices can then be passed to a trip assignment tool in order to 
simulate individuals’ route choices and thereby obtain trip level of service attributes for each trip 
during the course of day. In order to maximize the effectiveness of these activity based 
modelling approaches, the assignment procedure should not aggregate all these trips into zones, 
as is typically done for the four stage model. Therefore it is important to couple an agent-based 
simulation tool with a disaggregate activity based demand models. Such an integrated framework 
could be used to test and evaluate potential policy measures such as: changing pricing scenarios 
(e.g., congestion pricing and increasing transit fares), introducing new transit services and 
improving station facilities (e.g., parking lots, ease of transfer, bike stands, etc.). 
 
As of 2010, the MATSim platform, an open source dynamic agent-based assignment tool, has 
provided support for joint transit and automobile assignment and with the advent of modern 
desktop computers and the ability to simulate a small percentage of traffic while still producing 
useable disaggregate results; the assignment procedure becomes more reasonable from a 
computational standpoint [2]. These features, coupled with an existing auto only MATSim 
network for the GTHA, prompted the exploration into the feasibility of developing a multimodal 
agent-based dynamic traffic simulation framework for the region.  
 
For a region as large as the GTHA, obtaining schedule data for all the different transit agencies 
that operate within the region can be a challenge. This information is essential for performing 
multimodal assignment as it provides the details of not only where transit stops are located, but 
also when transit vehicles will visit these stops and in what order. Fortunately, the advent of 
Google Transit Feed Specification (GTFS) data, a common format for Transit agencies to 
publish their schedules for developers solves the problem of divergent data sources.  
 
The Remainder of this paper will address existing applications of GTFS data, as well as a 
number of multimodal development projects, the methods that were undertaken to integrate the 
GTFS data with the geocoded EMME [3] automobile network for the GTHA.  
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2. Literature Review 
The literature review focuses on existing applications of GTFS data, with a particular focus on 
applications specific to multimodal network development. In particular, a discussion on using 
GTFS within the MATSim framework will be presented, looking at both the cases of Singapore 
and the City of Toronto.   
 

2.1. Traditional GTFS Uses  
The unified structure of the GTFS data has been used by mobile and internet applications 
developers to create trip planning tools for transit riders. Keynote examples of such applications 
include Mapnificent [4] and OneBusAway [5]. These types of applications are attractive for two 
reasons: the GTFS data is open source and it has a standardized data format, which makes it 
readily available for many municipalities. Such applications are universal and can be used for 
any region by updating the application database with GTFS data for the new region. 
 

2.2. Network Modelling Approaches 
Despite the traditional uses of GTFS data, other applications exist, particularly in the field of 
multimodal network development. Through map matching procedures, transit stop locations 
(obtained through GTFS or other data sources) can be spatially matched to existing automobile-
only bi-directional geocoded networks. This allows for both transit and automobile assignment to 
be performed concurrently, thereby capturing the interaction between transit and automobile 
modes during assignment.  
 
The map-matching tool developed by Ordonez and Erath [6], was created to match bus line stop 
locations to a high-resolution geocoded network. This work focuses specifically on a bus only 
transit service and a high-resolution network for the City-State of Singapore. It should be noted 
that this approach was used for the MATSim Singapore network development and therefore was 
initially very attractive for implementation with the GTHA MATSim network, however a 
number of GTHA specific problems with this approach were identified. In the case of the 
GTHA, the use of regional rail services, streetcars, light rail transit (LRT) and subway services, 
makes the methods presented by Ordonez and Erath difficult to apply properly. Furthermore, 
because of the lower resolution of the auto only network in the GTHA, many of the methods and 
specific issues related to the high-resolution map matching procedure were inapplicable in the 
case of the GTHA.  Nevertheless, their work identifies key issues associated with combining an 
auto only network with transit services through the use of a map matching approach. 
Furthermore, much of the script code written to process GTFS data for MATSim in Singapore 
was applied for the GTHA MATSim network.  
 
Similar to the work of Ordonez and Earth, the work of Li [7] examines a procedure to match bus 
stops to road links in a geocoded auto network. Rather than examining each stop individually, 
the map matching procedure outlined by Li looks at a collection of sequential stops within a 
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route and uses a shortest path algorithm selecting the links that are most likely to be used by the 
transit vehicle to travel between successive stops. This approach is effective for map matching 
surface transit services with short distances between stops, to a high-resolution network, where 
multiple candidate links are in the vicinity for each potential stop. Despite the effectiveness of 
this approach, it is not applicable for map matching in the GTHA; however, the approach 
presented by Li present a solid foundation for understanding the map-matching problem.  
 
Kucirek [8] presented an initial attempt and discussion on the development of a multimodal 
network for the GTHA. At the time the work was conducted, only the 2006 auto planning level 
network was available. Despite this, GTFS data from March 2012 for the TTC was used to create 
a proof of concept that full multimodal assignment could be performed within the GTHA. This 
allowed the existing GTFS schedule generator developed for the Singapore MATSim assignment 
procedure to be used once the stop map matching had been completed. Because this work was 
developed as a proof of concept and a comparison between MATSim and the more traditional 
EMME assignment, little to no network resolution editing was performed prior to the actual map 
matching resulting in a simplified network. 
 
3. Data Sources 

3.1. EMME/MATSim Auto Network 
The existing MATSim auto network was imported from a geocoded planning-level network 
developed for the City of Toronto [3] for use with the EMME traffic assignment software 
package. The EMME and the MATSim networks consist of links and nodes, which are a virtual 
representation of the physical road infrastructure. Each node is associated with an identification 
number as well as a coordinate value and each link is associated with an identification number, a 
“from” node, a “to” node (representing the start and end nodes of each link), a length, a free flow 
speed, a capacity, and a list of modes which are permitted to use that link.  
 

3.2. GTFS Data 
General Transit Feed Specification is a standardized format for organizing public transport 
schedules and transit infrastructure geographical location. This standardized data format allows 
multiple transit agencies to publish their data such that developers can create streamlined 
applications, which use these standardized data sets. In the case of the GTHA, GTFS datasets 
were obtained for the City of Toronto, the Region of York, the City of Mississauga, the City of 
Brampton, the City of Hamilton and the GO Regional Transit Service, operated by Metrolinx.   
In cases where the transit authorities made their GTFS data publicly available, the GTFS data 
were retrieved from a GTFS database [9], otherwise, the feeds were obtained by request from the 
transit agency. Three transit agencies, namely, Durham Region Transit, Oakville Transit, and 
Burlington Transit, did not have GTFS data available at the time of writing and therefore these 
services were omitted from this study. 
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Figure-2 – GTFS Transit Stop Locations Within the GTHA 

 
4. Problem Definition:  
Figure-2 shows all the GTFS transit stop locations as well as the number of stops for each 
operator. In total there are 25431 stops split between all 6 operators. This section will outline the 
issues that arise from integrating these stops with the existing network such that a realistic 
multimodal assignment can be performed. 

Figure-3 shows a schematic diagram of the network representation.  The existing geocoded 
network, which is at a lower resolution compared to the actual road infrastructure, is shown in 
Figure-3-(a).The key challenge in matching GTFS data with the existing planning-level network 
was a difference in spatial resolution; the location of transit stops are defined more precisely in 
the GTFS data relative to the nodes in the geocoded network. Existing geocoded nodes represent 
major intersections while GTFS transit stops are shown at their exact locations, which are not 
necessarily located at major intersections. 



 7 

 

Figure-3 – Schematic of GTFS Map Matching Problem and Proposed Hybrid Network 
Solution 

Matching the resolution between the GTFS stops and the geocoded nodes is important to ensure 
that the simulation functions properly because MATSim only permits passengers to access or 
egress a transit vehicle at the end of links. If transit stops are not located at the end of a link, they 
will be skipped during the assignment procedure. To avoid this, three alternative solutions were 
proposed: 

1. Modify the geocoded network by increasing its resolution to match the resolution of the 
GTFS data;  

2. Modify the GTFS data by removing stops to match the lower resolution of the geocoded 
network; and  

3. Reference multiple GTFS stops to their corresponding geocoded network links without 
modifying the network resolutions.  
 

Alternative three was originally attempted by Kucirek [8] with limited success and therefore was 
not considered. On the basis that it is less onerous to decrease the resolution of a detailed 
network compared to the work involved in increasing the resolution of an aggregate network, 
alternative one was eventually selected.  Therefore, a map matching procedure is needed to 
represent both geocoded nodes and GTFS data in a hybrid network as shown in Figure-3-(b). 
This hybrid network will contain geocoded nodes which are proximate to the location of each 
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GTFS transit stop. This will facilitate the mapping of each GTFS transit stop to a node in the 
hybrid network and by extension a link terminating at that node. 

In order to facilitate the generation of this hybrid network, four GTFS data types were identified 
and spatially grouped to ease the matching procedure. Type one stops, which refer to surface 
terminals or interconnected transfer points between different transit lines, are represented by a 
cluster of stops, with each stop representing a single bus bay. Type two stops are surface (bus 
and streetcar) transit stops which are located around nodes that are already present in the 
geocoded network. Type three stops are surface (bus and streetcar) transit stops which are 
located along an existing network link that is present in planning level network however the link 
does not have nodes segmenting it at the location of actual stops.  Type four stops are surface 
(bus and streetcar) transit stops which are located along road segments that are not defined in the 
planning-level network. These road segments include new residential subdivisions or minor local 
roads with transit services which were not coded into the planning-level network. Type two, 
three and four stops were occasionally found clustered together, with each stop in a cluster 
representing a stop for one direction of travel. 

Moving from the original geocoded network, as in Figure-(3-a), to a hybrid GTFS/geocoded 
network, as in Figure-(3-b), increases the network resolution for types one, three and four stops 
by adding new links or/and modifying exiting links within the geocoded network, while 
maintaining the existing sufficient resolution for type two stops.  Figure-4 shows a sample of the 
original geocoded links, nodes and a sample of GTFS stops labeled by their type and Figure-5 
shows a section of the hybrid network after matching the GTFS stops to the geocoded nodes. As 
shown in Figure-5, all nodes are connected to the hybrid network links except transfer stations 
which are connected to the network via transit-only links.  

 

5. Map Matching Methods 
An overview and discussion of the procedure used to obtain the hybrid network is presented in 
section 5.1. The procedure is designed to minimize manual editing by grouping and matching 
station based on spatial proximity, which facilitates visual inspection. A detailed explanation of 
each step taken in the procedure is outlined in section 5.2.  
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Figure-4 Example of Each Stop Classification 

 

Figure-5 Final Hybrid Network 

Type 4 

Type 3 

Type 1 

Type 2 
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5.1. Procedure and Discussion 
Before the map matching procedure was performed, a set of particular GTFS stops were 
identified and excluded from the semi-automated procedure to be dealt with on a case-by-case 
basis. This set includes transfer stations (type one) and stops along transit lines with an exclusive 
right of way, express routes stops or night transit stops.  The procedure for type one stops was to 
group them into stop groups based on special proximity, and then based on the location of the 
stop group (the centroid of all stops in the stop group), create a special transit only node with 
transit only links that connect the transfer node to the rest of the network. Stops along routes with 
an exclusive right of way such as subways or regional trains were provided with their own 
separate network. This was done in order to prevent traffic on local roads interfering with the 
operation of these transit lines. The separate right of way networks were overlaid onto the 
multimodal network. Express routes were excluded because the stop spacing was at lower 
resolution then the existing planning level network. In this case, the work developed by Ordonez 
Erath [6] for use on the highly detailed Singapore MATSim network was employed to assign the 
express route stops to the network.  Stops servicing night transit service were also removed, as 
these services would often create complications in the development of the transit schedule for 
assignment due to irregular transit headways. Although potentially feasible to include these stops 
at a later date, they fall outside of the scope of the plans for the network in the near future.  

The remaining stops were aggregated into stop groups based on their spatial proximity as 
represented in Figure 4. Each stop group was first snapped to a corresponding planning-level 
network node if it was within a specific distance. These stops were classified as type two. All 
remaining stop groups were then snapped to a corresponding planning-level network link if the 
perpendicular distance between the stop group and link was within a specific distance. These 
stops were classified as type three. Any remaining stops that were not snapped to the network 
were flagged as being type four stops. These stops were handled manually by adding new nodes 
and links to the network. The remaining stop groups were then snapped to the new network. 
Links with stop groups along their edge were split at the location of these stop groups and new 
nodes were added. The combination of the original planning level network, the stop groups 
coded to existing nodes, the new nodes added as a result of splitting links and the new nodes and 
links added to accommodate type four stops form the basis of the hybrid network.  

The hybrid network now contains nodes, links and stop groups. The stop groups have been 
snapped to links as seen in figure 5. Within each stop group is a set of GTFS stops, each of 
which in turn needs to be mapped to the end of a link. In cases where multiple links terminate at 
a single node a procedure must be developed to determine the correct link to assign each stop. 
For example in figure 6-(a) the node has four links terminating at it and three stops within that 
nodes corresponding stop group. As can be seen in figure 6-(b), the north south and westbound 
links each have a stop associated with them, whereas the eastbound link does not have a stop 
associated with it. This results in the final required formulation seen in figure 6-(c). Because it is 
infeasible to determine this by visual inspection for all GTFS stops, an automated procedure was 
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developed. This procedure involved determining the stop sequence of each transit line and then 
using a modified version of the Dijkstra’s shortest path algorithm for the MATSim framework 
[10 & 11] to find the links between nodes whose stop groups have two consecutive stops in a 
transit line. The second stop in the pair of consecutive stops was then matched to the final link in 
the path between the two stops.  This procedure was performed for all transit lines in the GTFS 
schedule data such that all of the GTFS transit stops were assigned to the end of a link.  

 

Figure-6 The Problem of Assigning Stops to Links  

Fortunately, the link to stop mapping and the link path between consecutive stops is information 
that is explicitly required as an input in a schedule file for MATSim to perform transit 
assignment and thus once this information had been extracted, it was used to generate the 
MATSim schedule file.   

5.2. Detailed Procedure 
 
Each detailed step presented here results in a new or modified geometry, which can be visually 
and analytically checked against the prior dataset to validate the results from the previous step.  
 
1) Stops serving exclusive ROW lines – in this case subway and commuter rail lines – were 

filtered from the set of stops. They were grouped by proximity. 
2) From the remaining surface stops, Type 1 stop groups were identified and grouped manually, 

and then removed from the set of ungrouped stops. Type 1 stops were identified through a 
combination of methods including examining stops in close proximity to subway or rail 
stations as well as large points of attraction such as shopping malls. These stops were put 
aside to be added to the network during a later step.  

3) The remaining ungrouped stops for each transit agency were grouped by proximity, based on 
special proximity.  It worth mentioning that we tested different tolerance buffers for each 
area based on the density of stops and their spacing. For example, the TTC had a higher stop 
density and therefore a lower distance between stops was used when compared to Brampton.  
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4) All of the different transit agency stop groups were combined together and then another 
grouping was performed to combine stop groups from different agencies, which use the same 
or proximate infrastructure.  

5) The nearest network node to each stop group was located. Stop groups whose nearest 
network node was within 50 meters were identified as type two stops and snapped to that 
node. Stop groups whose nearest network node was more than 50 meters away were 
classified as either Type 3 or Type 4. 

6) The nearest network link to the remaining type three or four groups was located. If the 
perpendicular distance between the stop group and the link was within 150 meters that stop 
group was classified as Type 3. If the perpendicular distance between the link and the stop 
group was greater than 150 meters, then the stop group was classified as type 4.  

7) Type three stop groups were snapped to the nearest network link. The link was split at the 
location of the snapped stop group and a new node was added at this location.  

8) Type 4 stop groups required manual editing of the network, since many of them 
corresponded to new network links. The speed limit and number of lanes of each new link 
were identified using Google Maps and Street View; most links were local streets with speed 
limits or either 40 or 50 km/hr. Link per-lane capacities were based on adjacent links in the 
same regional municipality with similar properties. 

9) During the manual editing process, it was occasionally necessary to expand certain stop 
groups to accommodate logical nearby stops which were not identified by the automated 
procedure. It was also occasionally necessary to re-classify some groups as Type 1, typically 
smaller bus-bays serving smaller shopping malls or local health centres. 

10) A second pass of the type classification procedure was performed to map each stop group to 
its corresponding intersection. 

11) For Type 1 stop groups, a network node was created at the stop group centroid, and 
connected via a two-way link to an appropriate nearby network node; thus representing a 
network loop.  

12) Stop groups were subdivided into sets of stops with each stop to be mapped to the one of the 
links ending at the stop’s stop group’s node. Based on the shortest path between consecutive 
stops in a transit line, each stop was assigned to the final link between it and the previous 
stop on the path of the transit vehicle.   

13) Finally, express routes were processed using MATSim’s existing module for GTFS mapping, 
which allows large routes to be adjusted in detail one-at-a-time. For more details on this 
procedure, see [5] and [7]. 

 
 

6. Conclusion 

This paper examines the issues and challenges associated with performing map matching of high 
resolution transit stop locations to a lower resolution planning level network. This map matching 
procedure uses a transit stop classification system based on spatial proximity to both other stops 
and the network. This work extends on existing map matching procedures and develops a 
procedure to expand lower resolution networks such that they are fully able to accommodate 
high-resolution transit data using standard map matching procedures.  The outcome of this 
procedure resulted in both a methodology for similar cases of matching high-resolution 
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coordinates to a low resolution network as well as a fully functioning multimodal network ready 
for simulation.  The next section will discuss future plans for accomplishing this simulation  

 
7. Future Work  
 
In order to perform a multimodal traffic assignment, a sample population is required. Based on 
other work done with multimodal MATSim assignment for the City-State of Singapore [9] a 25 
percent expanded sample population is appropriate in order to minimize cases of bus 
overcrowding compared to traditionally smaller percent sample used for auto assignment (in the 
case of the GTHA, a 5% sample is used). The bus-overcrowding problem occurs when the 
capacity of the transit vehicle is reduced to reflect the population sample size, which can cause a 
single extra rider to result in the bus exceeding capacity when it should not.   
 
A 24-hour trip diary for the sample population of the GTHA was extracted from the 2006 
Transportation Tomorrow Survey (TTS) dataset, which was collected by the Data Management 
Group (DMG) at the University of Toronto [12]. TTS is a trip-based household survey conducted 
every five years in the Greater Toronto and Hamilton Area (GTHA) among 5 percent of its 
population. The latest TTS survey datasets available is the 2006 TTS survey dataset, which will 
be used for this study. Once the 2011 data is available, trip diaries can be simply updated 
accordingly.  
 
The discussed map-matching procedure is a main step in the development of a multimodal 
network for the GTHA. However, three of the GTHA transit operators did not have GTFS data 
available at the time of writing and therefore these services were omitted from this study. This 
omission creates a gap within the study area. For that reason, the map-matching procedure was 
designed in a generic way to accommodate future extensions and ensure universal transferability 
to other study areas.  
 
The developed network will be validated using traffic screen line counts obtained from the Data 
Management Group at the University of Toronto [12]. Then, an extensive network cleaning 
process will follow. For instance, the process includes identification of “bus-pocket” locations or 
road infrastructure where bus stopping does not impede traffic. These stop locations will be 
flagged such that during assignment, the busses will not impede the flow of other vehicles. 
 
An advanced transit fare calculator tool is currently under development. This tool is capable of 
calculating fares for trips that involve using one or more transit modes, which can be operated by 
different agencies. In addition, the fare calculator accounts for fare integration polices such as 
discounted fares for connecting trips.  
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