

ABSTRACT

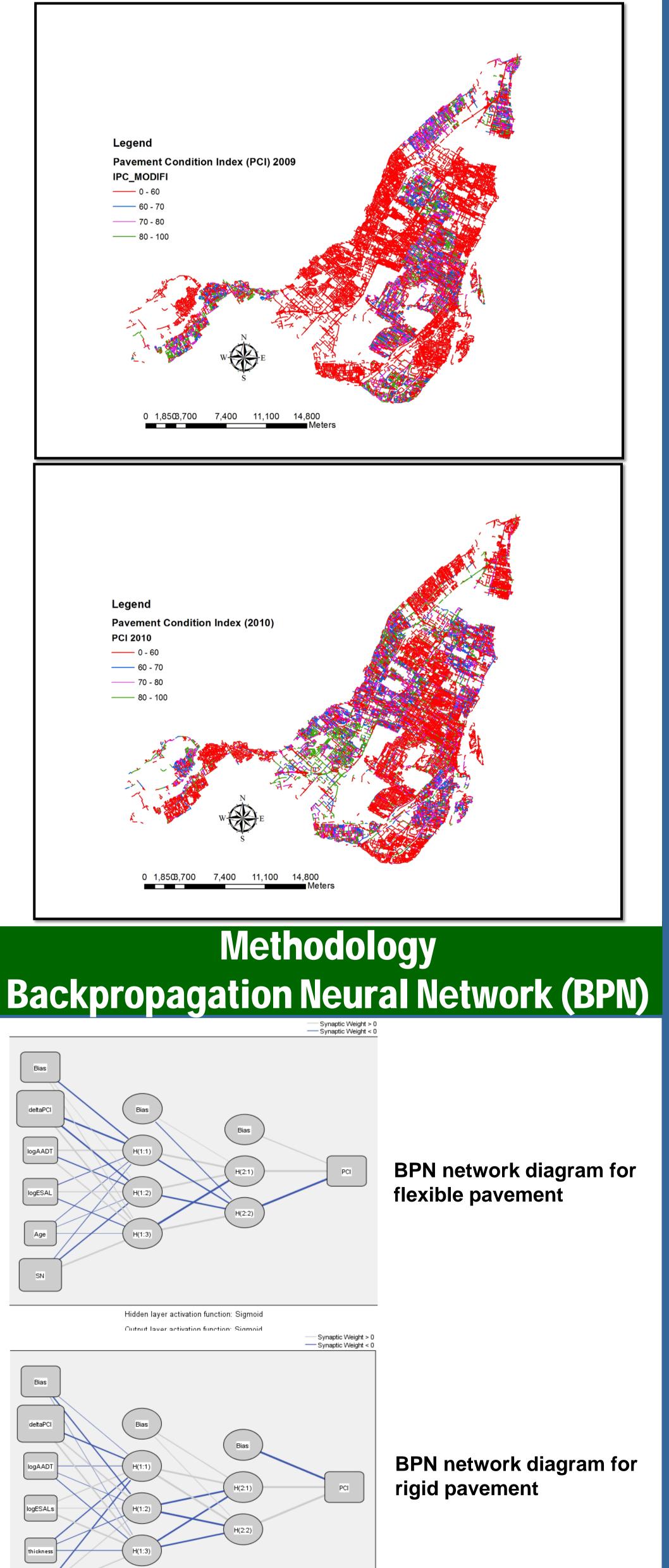
The objective of this study is to apply the Backpropagation Neural Network (BPN) method with Generalized Delta Rule (GDR) learning algorithm for offsetting the statistical errors of the pavement performance modeling. The Multi-Layer Perceptron (MLP) network and sigmoid activation function are applied to build the BPN network. Collector and arterial roads of both flexible and rigid pavements in Montreal City are taken as a case study. Data on pavement condition and age, traffic volume and road characteristics are collected from Ville de Montréal. The input variables of Pavement Condition Index (PCI) are Average Annual Daily Traffic (AADT), Equivalent Single Axle Loads (ESALs), Structural Number (SN), pavement's age, slab thickness and difference of PCI between current and preceding year (Δ PCI). The BPN networks estimates that the PCI has inverse relationships with AADT, ESALs and pavement's age. The PCI has positive relationships with these variables for roads that have recent treatment operations. The PCI has positive relationships with SN and slab thickness that imply that the increase of structural strength and slab thickness increases the pavement condition. The Δ PCI significantly influences the estimation of PCI values. The AADT and ESALs have considerable importance, however, pavement's age and structural characteristics of pavement have insignificant influence in determining the PCI values except in the case of flexible arterial roads.

INTRODUCTION

Pavement performance curves are to ensure the accuracy of pavement maintenance and rehabilitation (M&R) operations (Attoh-Okine 1999).

Two streams of pavement performance modeling - deterministic and stochastic approaches.

Deterministic models cannot address some important issues such as (a) randomness of traffic loads and environmental conditions, (b) difficulties in quantifying the factors or parameters that substantially affect pavement deterioration, (c) measurement errors associated with pavement condition and (d) bias from subjective evaluations of pavement condition (Li et al. 1997).


Stochastic models (a) do not accommodate budget constraints along with condition state and (b) pavement sections are grouped into a small number of roughly homogeneous families

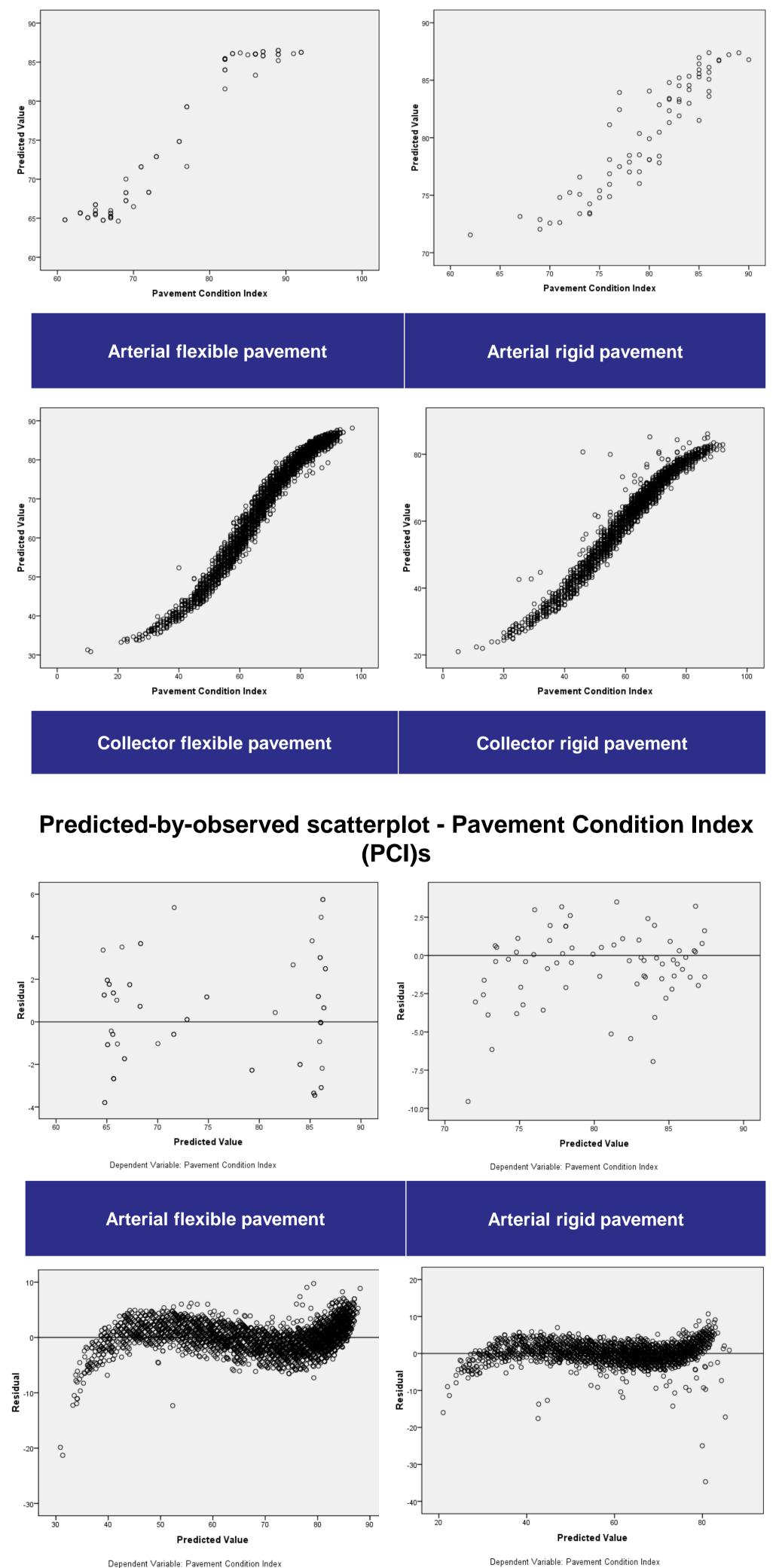
Objective:

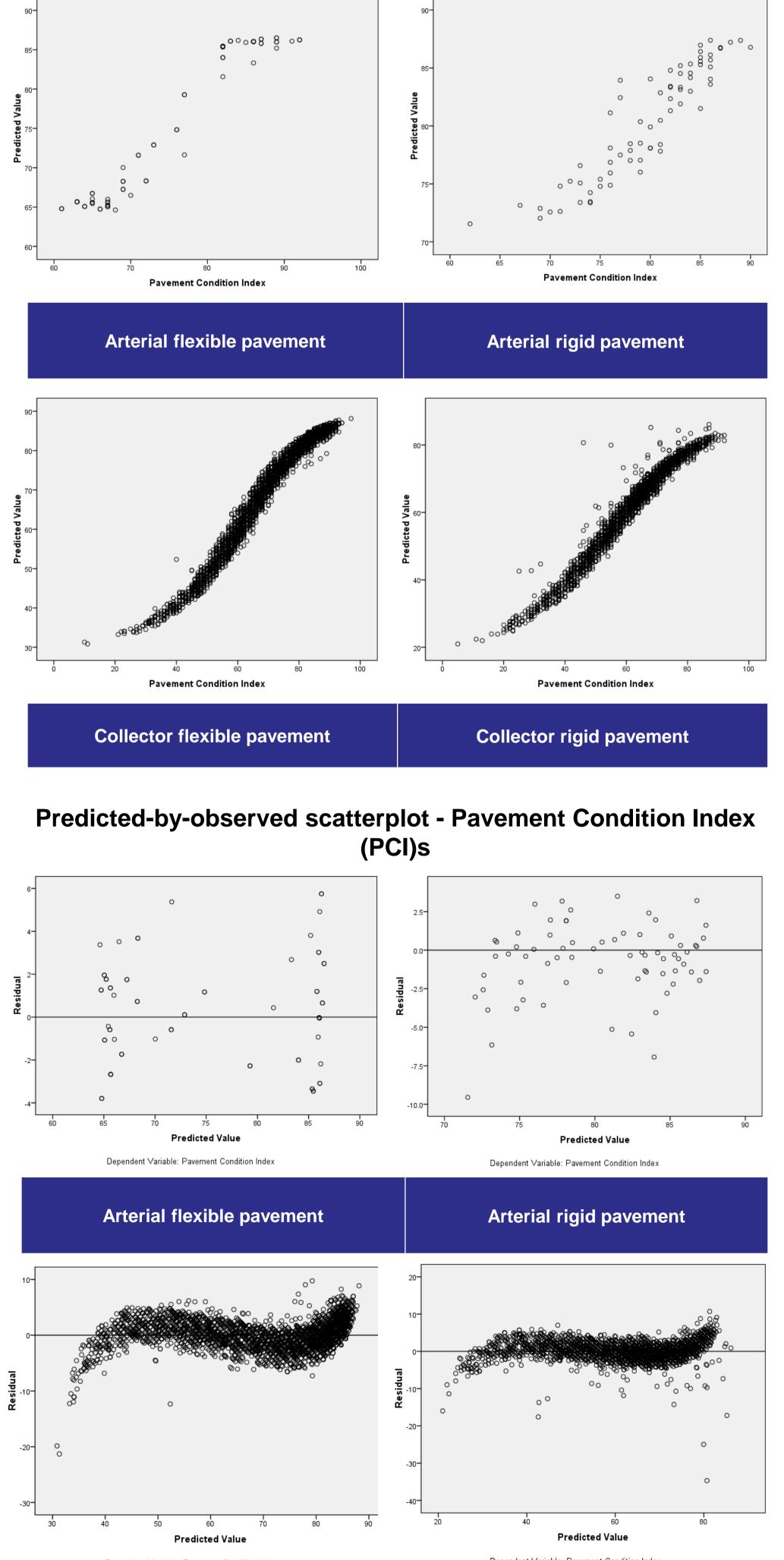
To apply Backpropagation Neural Network (BPN) method with Generalized Delta Rule (GDR) learning algorithm to offset the statistical error of the pavement performance modeling.

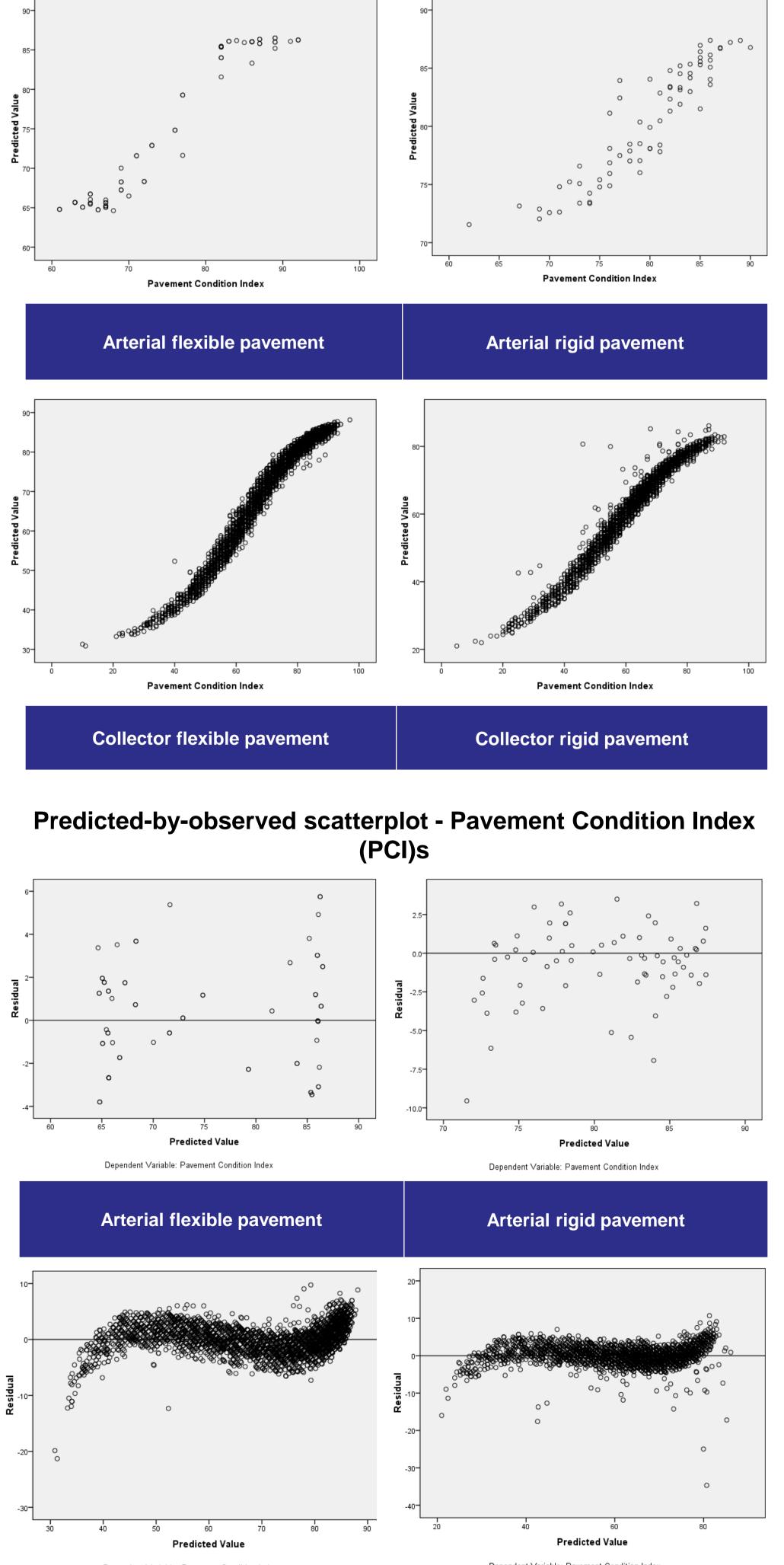
Collector and arterial roads of Montreal City are taken as a case study.

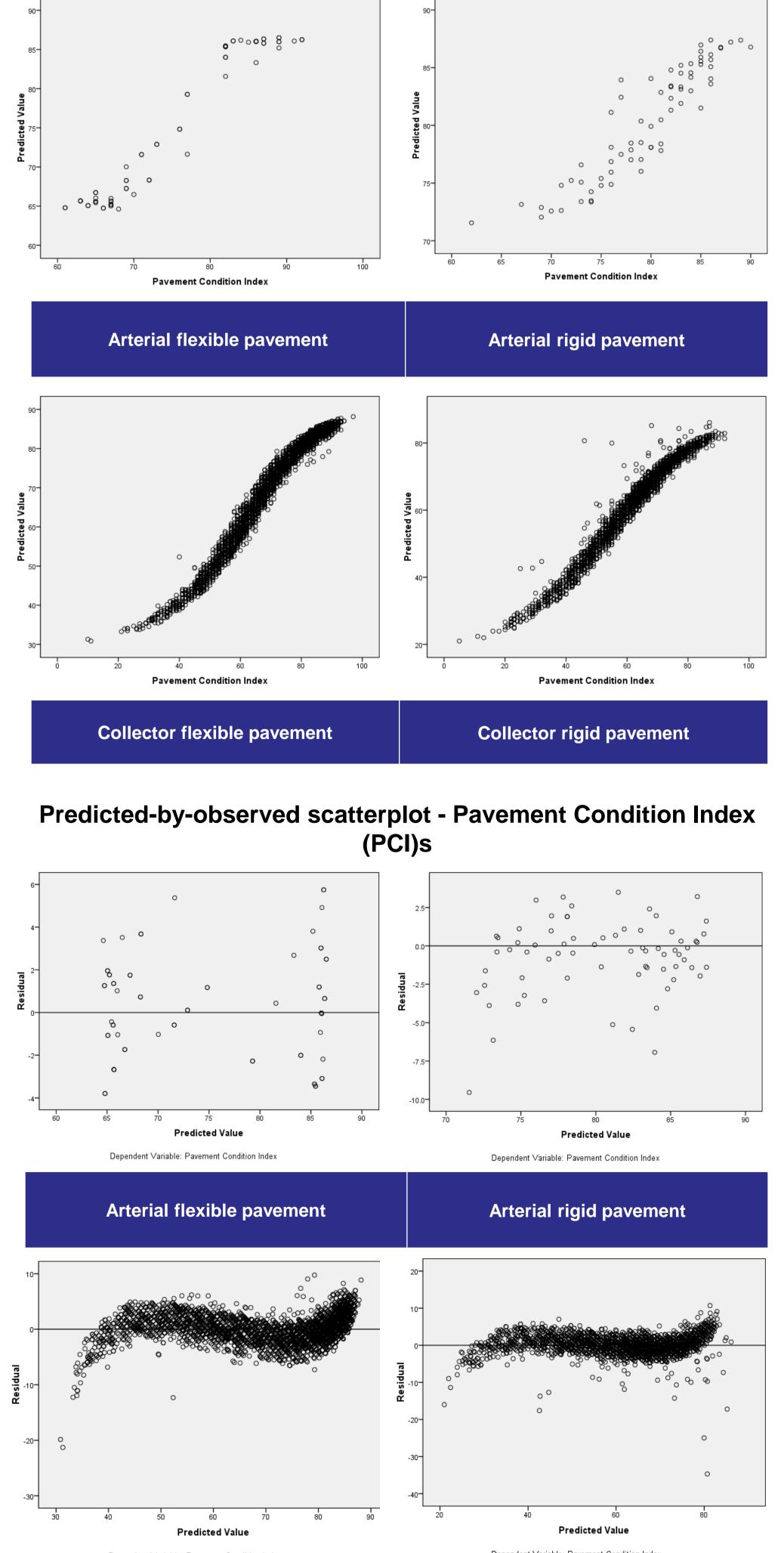
Pavement Condition Index (PCI) **Montreal Road Network- Case Study**

The Application of Backpropogation Neural Network to deal with randomness of the Pavement Performance Modeling


Md. Shohel Reza Amin Ph.D. Candidate (Civil Engineering), Concordia University Email: shohelamin@gmail.com; Phone: 438-936-4119


Hidden layer activation function: Sigmoid Output layer activation function: Sigm


Back Propagation Neural Network Performance


Error Estimation of Backpropagation Neural Network Models										
Cases	Statistical significance	Arte	erial	Collector						
	Statistical significance	Flexible	Rigid	Flexible	Rigid					
Training	Sum of Squares Error	0.13	0.083	0.516	0.389					
	Relative Error	0.051	0.105	0.033	0.036					
Testing	Sum of Squares Error	0.135	0.472	1.024	0.741					
	Relative Error	0.094	0.225	0.033	0.040					
Validation	Relative Error	0.09	0.716	0.037	0.037					

Predicted-by-observed scatterplot - Pavement Condition Index (PCI)

Collector flexible pavement

Collector	rigid	pavement

			Predicted PCI for Arterial Roads						Predicted PCI for Collector Roads					
							Output						Output	
		Hie	Hidden Layer 1			Hidden Layer 2 Laye		Hidden Layer 1			Hidden Layer 2		Layer	
	Predictor	H(1:1)	H(1:2)	H(1:3)	H(2:1)	H(2:2)	PCI	H(1:1)	H(1:2)	H(1:3)	H(2:1)	H(2:2)	PCI	
	(Bias)	647	541	523				460	.052	.115				
		3.877	1.576	-1.031				1.025	889	.838				
	Log ₁₀ (AADT)	086	249	.069				423	.253	265				
Input	Log ₁₀ (ESALs)	077	325	.005				176	.209	201				
Layer	Pavement's Age (N)	-2.765	-1.207	.415				092	021	017				
	Structural Number (SN)	.020	.052	.622				.111	.368	.946				
	(Bias)				.429	.646					.062	179		
Hidden	H(1:1)				-3.553	-2.520					1.367	676		
Layer 1	H(1:2)				-1.720	-1.303					1.043	879		
	H(1:3)				712	017					-2.341	1.579		
Hidden	(Bias)						-2.102						.222	
Layer 2	H(2:1)						4.151						4.063	
	H(2:2)						4.034						-2.363	

		Predicted PCI for Arterial Roads						Predicted PCI for Collector Roads					
		Outpu				Output	ut					Output	
		Hidden Layer 1			Hidden Layer 2		Layer	Hidden Layer 1			Hidden Layer 2		Layer
Predictor		H(1:1)	H(1:2)	H(1:3)	H(2:1)	H(2:2)	PCI	H(1:1)	H(1:2)	H(1:3)	H(2:1)	H(2:2)	PCI
	(Bias)	463	393	.115				045	379	041			
		340	1.288	.971				496	.511	.522			
	Log ₁₀ (AADT)	.661	059	097				.058	046	241			
Input	Log ₁₀ (ESALs)	.348	121	059				.296	060	546			
Layer	Pavement's Age (N)	286	-1.850	-1.268				431	266	323			
	Slab Thickness (mm)	.440	.282	.745				.327	.157	.230			
	(Bias)				.477	070					.284	.151	
Hidden	H(1:1)				.710	.685					1.686	2.079	
Layer 1	H(1:2)				930	1.442					-1.685	-1.880	
	H(1:3)				1.380	565					-1.346	-1.210	
Hidden	(Bias)						3.153						-2.462
Layer 2	H(2:1)						2.987						3.292
	H(2:2)						-8.442						3.621

Importance of input variables to estimate PCI values in BPN networks

	Arterial			Collector		
Input variables	Flexible	Rigid	Flexible	Rigid		
APCI	.364	.331	.330	.329		
Log ₁₀ (AADT)	.138	.230	.226	.201		
Log ₁₀ (ESALs)	.120	.194	.221	.248		
Pavement's Age (N)	.363	.162	.123	.211		
Structural Number (SN)	.015		.100			
Slab Thickness (mm), T		.083		.012		

Conclusion

- 4 This study applies BPN method with Generalized Delta Rule (GDR) learning algorithm for offsetting the statistical error of pavement performance modeling.
- 4 \triangle PCI significantly influence PCI values of flexible arterial, rigid arterial, flexible collector and rigid collector roads by 36.3%, 33.1%, 33% and 32.9% respectively.
- **4** AADT and ESALs have considerable importance to estimate PCI values
- Pavement's age does not significantly influence PCI except for flexible arterial roads
- Structural characteristics of pavement do not have significant influence PCI values
- **4** Complete historic record will enable to estimate more accurate pavement performance model by applying BPN network

Results

Parameter estimation of the independent variables of PCI for Rigid pavements

REFERENCES

Attoh-Okine NO (1999) Analysis of Learning Rate and Momentum Term in Backpropagation Neural network Algorithm Trained to Predict Pavement Performance. Advances in Engineering Software 30:291-302.

Li, N., Haas, R., and Xie, W.-C. (1997). "Investigation of Relationship between Deterministic and Probabilistic Prediction Models in Pavement Management." Transportation Research Record: Journal of the Transportation Research Board, 1592, 70-79,