
The Application of  Backpropogation Neural Network to deal with randomness of the 
Pavement Performance Modeling 

Md. Shohel Reza Amin 
Ph.D. Candidate (Civil Engineering), Concordia University 

Email: shohelamin@gmail.com; Phone: 438-936-4119 

REFERENCES 

ABSTRACT 
The objective of this study is to apply the 
Backpropagation Neural Network (BPN) method with 
Generalized Delta Rule (GDR) learning algorithm for 
offsetting the statistical errors of the pavement 
performance modeling. The Multi-Layer Perceptron 
(MLP) network and sigmoid activation function are 
applied to build the BPN network. Collector and 
arterial roads of both flexible and rigid pavements in 
Montreal City are taken as a case study. Data on 
pavement condition and age, traffic volume and road 
characteristics are collected from Ville de Montréal. 
The input variables of Pavement Condition Index 
(PCI) are Average Annual Daily Traffic (AADT), 
Equivalent Single Axle Loads (ESALs), Structural 
Number (SN), pavement’s age, slab thickness and 
difference of PCI between current and preceding 
year (∆PCI). The BPN networks estimates that the 
PCI has inverse relationships with AADT, ESALs and 
pavement’s age. The PCI has positive relationships 
with these variables for roads that have recent 
treatment operations. The PCI has positive 
relationships with SN and slab thickness that imply 
that the increase of structural strength and slab 
thickness increases the pavement condition. The 
∆PCI significantly influences the estimation of PCI 
values. The AADT and ESALs have considerable 
importance, however, pavement’s age and structural 
characteristics of pavement have insignificant 
influence in determining the PCI values except in the 
case of flexible arterial roads. 
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INTRODUCTION 
Pavement performance curves are to ensure the 
accuracy of pavement maintenance and 
rehabilitation (M&R) operations (Attoh-Okine 
1999).  
 
Two streams of pavement performance modeling 
- deterministic and stochastic approaches.  
 
Deterministic models cannot address some 
important issues such as (a) randomness of 
traffic loads and environmental conditions, (b) 
difficulties in quantifying the factors or 
parameters that substantially affect pavement 
deterioration, (c) measurement errors associated 
with pavement condition and (d) bias from 
subjective evaluations of pavement condition (Li 
et al. 1997).  
 
Stochastic models (a) do not accommodate 
budget constraints along with condition state and 
(b) pavement sections are grouped into a small 
number of roughly homogeneous families 
 
Objective: 
To apply Backpropagation Neural Network (BPN) 
method with Generalized Delta Rule (GDR) 
learning algorithm to offset the statistical error of 
the pavement performance modeling.  
 
Collector and arterial roads of Montreal City are 
taken as a case study. 

Back Propagation Neural  
Network Performance 

Methodology 
Backpropagation Neural Network (BPN) 

 
 
 
 
 
 
 
 
 

Results 

Conclusion 
This study applies BPN method with Generalized Delta Rule (GDR) learning algorithm 
for offsetting the statistical error of pavement performance modeling.  

∆PCI significantly influence PCI values of flexible arterial, rigid arterial, flexible collector 
and rigid collector roads by 36.3%, 33.1%, 33% and 32.9% respectively. 

AADT and ESALs have considerable importance to estimate PCI values 

Pavement’s age does not significantly influence PCI except for flexible arterial roads 

Structural characteristics of pavement do not have significant influence PCI values 

Complete historic record will enable to estimate more accurate pavement performance 
model by applying BPN network   

 

Parameter estimation of the independent variables of PCI for Flexible pavements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter estimation of the independent variables of PCI for Rigid pavements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Importance of input variables to estimate PCI values in BPN networks 

Pavement Condition  Index  (PCI) 
Montreal Road Network- Case Study 

BPN network diagram for 
rigid pavement 

BPN network diagram for 
flexible pavement 

Cases Statistical significance  Arterial Collector 
Flexible Rigid Flexible Rigid 

Training 
  

Sum of Squares Error 0.13 0.083 0.516 0.389 
Relative Error  0.051 0.105 0.033 0.036 

Testing 
  

Sum of Squares Error 0.135 0.472 1.024 0.741 
Relative Error  0.094 0.225 0.033 0.040 

Validation Relative Error  0.09 0.716 0.037 0.037 

Error Estimation of Backpropagation Neural Network Models  

Predicted-by-observed scatterplot - Pavement Condition Index (PCI) 

 
Arterial flexible pavement 

 
Arterial rigid pavement 

  

 
Collector flexible pavement 

 
Collector rigid pavement 

  

Predicted-by-observed scatterplot - Pavement Condition Index 
(PCI)s 

 
Arterial flexible pavement 

 
Arterial rigid pavement 

  

 
Collector flexible pavement 

 
Collector rigid pavement 

  

Predictor 

Predicted PCI for Arterial Roads Predicted PCI for Collector Roads 

Hidden Layer 1 Hidden Layer 2 
Output 
Layer Hidden Layer 1 Hidden Layer 2 

Output 
Layer 

H(1:1) H(1:2) H(1:3) H(2:1) H(2:2) PCI H(1:1) H(1:2) H(1:3) H(2:1) H(2:2) PCI 
 
 
 
Input 
Layer 
   

(Bias) -.647 -.541 -.523       -.460 .052 .115       
∆PCI 3.877 1.576 -1.031       1.025 -.889 .838       
Log10(AADT) -.086 -.249 .069       -.423 .253 -.265       
Log10(ESALs) -.077 -.325 .005       -.176 .209 -.201       
Pavement’s Age (N) -2.765 -1.207 .415       -.092 -.021 -.017       
Structural Number (SN) .020 .052 .622       .111 .368 .946       

 
Hidden 
Layer 1 
  

(Bias)       .429 .646         .062 -.179   
H(1:1)       -3.553 -2.520         1.367 -.676   
H(1:2)       -1.720 -1.303         1.043 -.879   
H(1:3)       -.712 -.017         -2.341 1.579   

Hidden 
Layer 2 
  

(Bias)           -2.102           .222 
H(2:1)           4.151           4.063 
H(2:2)           4.034           -2.363 

Predictor 

Predicted PCI for Arterial Roads Predicted PCI for Collector Roads 

Hidden Layer 1 Hidden Layer 2 
Output 
Layer Hidden Layer 1 Hidden Layer 2 

Output 
Layer 

H(1:1) H(1:2) H(1:3) H(2:1) H(2:2) PCI H(1:1) H(1:2) H(1:3) H(2:1) H(2:2) PCI 
 
 
 
Input 
Layer 
   

(Bias) -.463 -.393 .115       -.045 -.379 -.041       
∆PCI -.340 1.288 .971       -.496 .511 .522       
Log10(AADT) .661 -.059 -.097       .058 -.046 -.241       
Log10(ESALs) .348 -.121 -.059       .296 -.060 -.546       
Pavement’s Age (N) -.286 -1.850 -1.268       -.431 -.266 -.323       
Slab Thickness (mm) .440 .282 .745       .327 .157 .230       

 
Hidden 
Layer 1 
  

(Bias)       .477 -.070         .284 .151   
H(1:1)       .710 .685         1.686 2.079   
H(1:2)       -.930 1.442         -1.685 -1.880   
H(1:3)       1.380 -.565         -1.346 -1.210   

Hidden 
Layer 2 
  

(Bias)           3.153           -2.462 
H(2:1)           2.987           3.292 
H(2:2)           -8.442           3.621 

Input variables 
Arterial Collector 

Flexible   Rigid  Flexible   Rigid  
∆PCI .364 .331  .330 .329 
Log10(AADT) .138 .230 .226 .201 
Log10(ESALs) .120 .194 .221 .248 
Pavement’s Age (N) .363 .162 .123 .211 
Structural Number (SN) .015   .100   
Slab Thickness (mm), T   .083   .012 
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