1. Contexte
L'expansion des berges aux Îles-de-la-Madeleine (Figure 1) est une menace concrète pour le réseau routier, les infrastructures électrique et d'aqueduc, ainsi que les habitations. À terme, les activités socio-économiques de la région sont grandement menacées. Certains secteurs du réseau de la route 198 aux Îles-de-la-Madeleine sont particulièrement vulnérables aux tempêtes (Figures 2, 3 et 4). Durant l'hiver, la banquise côtière joue un rôle de protection et d'amortissement de l'énergie des vagues lors des tempêtes. Le banquise réduit également la surface de transfert d'énergie et inhibe ainsi la formation des vagues.

2. Matériels et méthodologie
Au cours de la dernière décennie on a observé une réduction de la saison de glace dans le secteur des Îles-de-la-Madeleine (Bajaria et al. 2011, Gallbraith et al. 2013), associée à une augmentation de la fréquence des années de "glace mince" (Johnston et al. 2005). La modification des patrons de glace, tant sur land que sur l’épípace, entraîne donc une plus grande vulnérabilité du littoral lors de tempêtes hivernales à fort potentiel destructeur (par exemple, 24 mars 2010, 21 décembre 2010, 27 janvier 2011, Figure 4).

3. Résultats : climat de vagues
C'est pourquoi le ministère des Transports du Québec, en association avec l’Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, a mis en place un programme d'acquisition de données océanographiques devant les secteurs menacés de la route 198 pour une durée d'un an. Au total 4 professeurs de courant (ADCP, modèle AWAC-AST) ont été immergés pour une durée de 4 mois à 1 an, au large du secteur de Pointe-aux-Loups, du Récliff Parle et de la Baie-de-Pleasure (Figure 8). Un manomètre a également été installé dans le port de Grosse-Île pour mesurer les marées et les surcotes sur la façade nord-ouest des Îles-de-la-Madeleine (Figure 7).

4. Résultats : détection de la glace et coexistence de vagues/glace
Les plus fortes tempêtes se produisent sur le côté nord-ouest, avec des hauteurs significatives de vagues atteignant jusqu’à 8 m au large (site C). En 2013-2013, on observe de nombreuses tempêtes hivernales à cause du couvert de glace réduit. Les tempêtes sur le côté sud-ouest sont au moins aussi nombreuses, mais les vagues mesurées sont plus faibles (hauteur significative jusqu'à 5,3 m) à cause du facteur plus limité. Les tempêtes de l'atlantique ont attaqué les sites de mesures déjà partiellement atteintes. Ces données permettront de mieux calibrer les modèles numériques océaniques (vagues et courant) utilisés pour la conception des ouvrages de protection de la route 196. Elles sont essentielles pour l'analyse de solutions à la protection des différentes infrastructures aux Îles-de-la-Madeleine.

5. Conclusions
Ces mouvements ont permis de mesurer pour la première fois le climat de vague annuel au long des Îles-de-la-Madeleine. Les plus fortes tempêtes se produisent sur le côté nord-ouest, avec des hauteurs significatives de vagues atteignant jusqu’à 8 m au large (site C). En 2013-2013, on observe de nombreuses tempêtes hivernales à cause du couvert de glace réduit. Les tempêtes sur le côté sud-ouest sont au moins aussi nombreuses, mais les vagues mesurées sont plus faibles (hauteur significative jusqu’à 5,3 m) à cause du facteur plus limité. Les tempêtes de l'atlantique ont attaqué les sites de mesures déjà partiellement atteintes. Ces données permettront de mieux calibrer les modèles numériques océaniques (vagues et courant) utilisés pour la conception des ouvrages de protection de la route 196. Elles sont essentielles pour l'analyse de solutions à la protection des différentes infrastructures aux Îles-de-la-Madeleine.

Remerciements : Ce projet a été financé par le ministère des Transports du Québec, dans le cadre du plan d'action sur les changements climatiques 2006-2012 du Gouvernement du Québec (action 23). Les auteurs remercient Gilles Deleuze, Bruno Cayouette et Benoit Ruest pour le support technique, ainsi que le pêcheur-prêteur Mario Delapeau.