

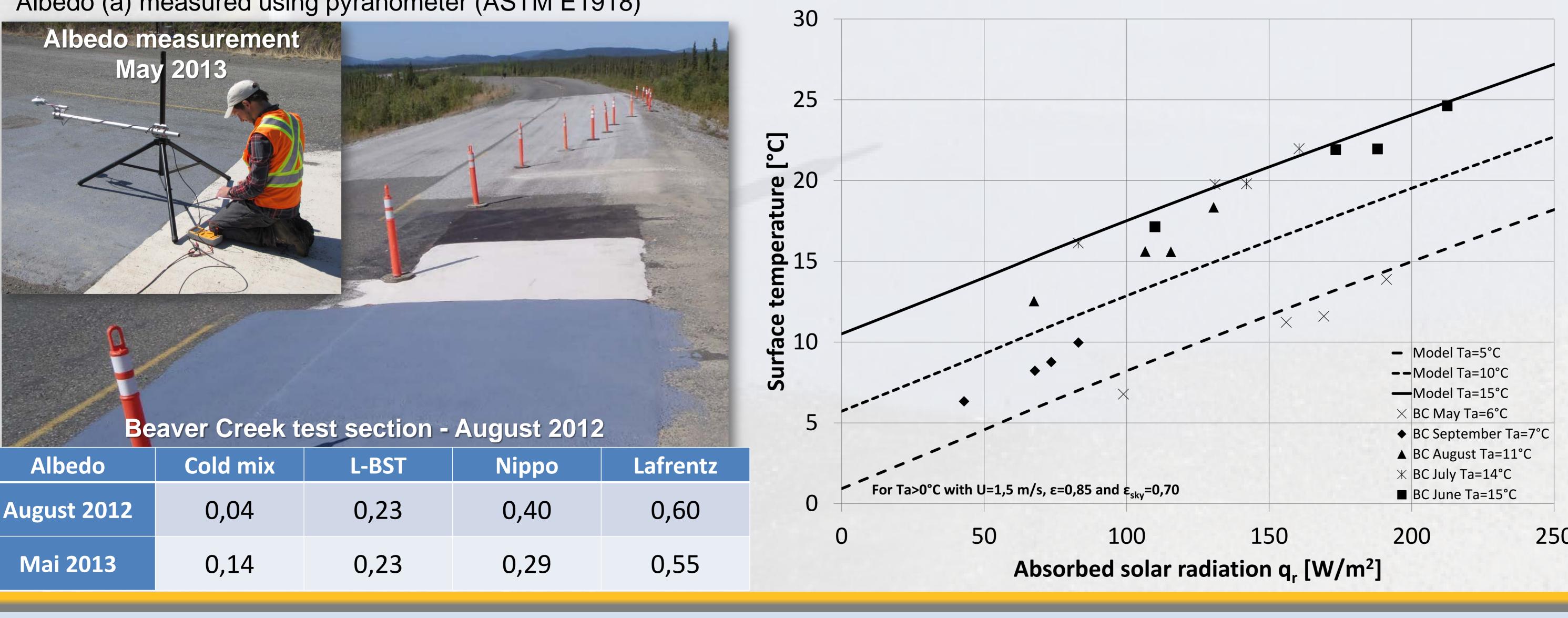
High albedo surfaces for thermal stabilisation of road embankment built on permafrost Simon Dumais¹, Guy Doré,, Department of Civil Engineering and Centre for Northern Studies, Université Laval, ¹ simon.dumais.2@ulaval.ca

Introduction

Heat absorbed by dark pavement can increase thaw pe within a road embankment and can induce instability ca thaw settlement of the underlying permafrost.

High albedo road surfaces (HAS) can reduce the heat the pavement thus increasing stability of the embankme Past experiments with HAS have shown that they can reduce thaw penetration but that they present some tec regarding skid resistance and durability.

Objectives


The main objective of this project is to provide a way to relevance of using HAS and especially to:

- Quantify the effect of a pavement's albedo surface temperature
- Provide methods to evaluate technical prop HAS

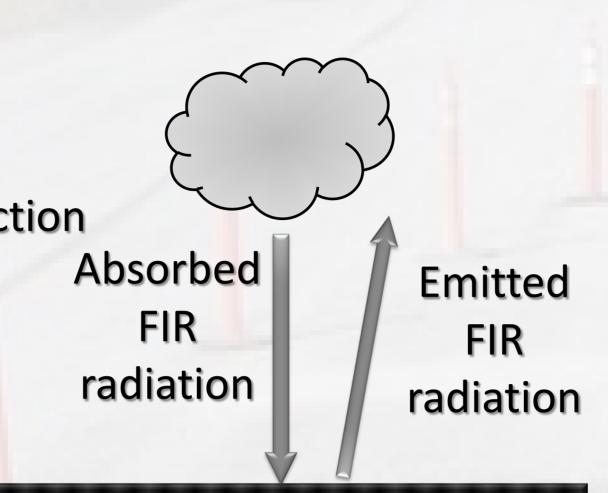
Methodology

Test section in Beaver Creek, Yukon along the Alaska Four surfaces with different albedos

- Bituminous surface treatment using light coloured
- Asphalt cold mix
- Lafrentz (white coating)
- Nippo (grey coating with high infrared reflection)
- Surface temperatures recorded from august 2012
- Albedo (a) measured using pyranometer (ASTM E1918)

COLASCANADA

Beaver Creek test section - August 201				
Albedo	Cold mix	L-BST	Nippo	
August 2012	0,04	0,23	0,40	
Mai 2013	0,14	0,23	0,29	



-			
penetration caused by	Model for calculatic		
absorbed by nent. efficiently echnical flaws	Reflected solar radiation	Incident solar radiation Convect Wind	
o evaluate the	Paven Embank		
on its	Energy balance at the surface		
perties of		$0 = q_r + q_c + q_e$	
	Solar radiation	$q_r = (1 - a)$	
Highway	Convection	$q_c = h_c (T_s -$	
ed aggregates	FIR radiation	$q_e = \sigma(\varepsilon_s T_s^2)$	
)	Conduction	<i>qg</i> = −0,08	

Monthly average surface temperature

emperature

nduction

ice of the pavement

- $q_e + q_g$
- $a)q_i$
- $-T_a$)

$$s^4 - \varepsilon_{sky}T_a^4$$

$$85q_{i_max}sin\left(\frac{(n-2)\pi}{6}\right)$$

Technical properties of HAS

The following properties and test methods are proposed to evaluate the skid resistance and the durability of HAS.

Skid resistance

- Micro texture
- British pendulum
- ASTM E303
- Low speed skid resistance

Macro texture

- Sand patch test
- ASTM E965
- Provides durability and thermal benefits

Durability

- Samples
- High albedo coating applied on asphalt plate

Abrasion resistance

- Sand blast method
- Measured mass loss of coating after each cycle

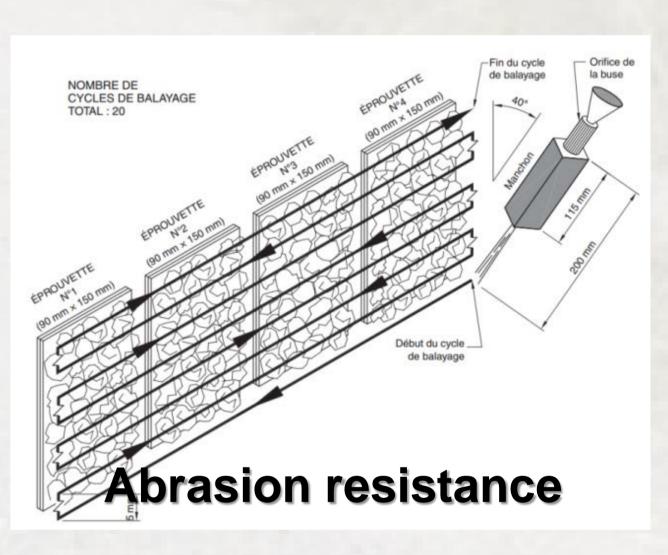
Adhesion to substrate

- Direct tension test
- Indicate adhesion force of coating to substrate

Resistance to freeze/thaw cycles

- ASTM C666
- Thawing in water at 4°C
- Freezing in air at -18°C
- Visual evaluation of degradation

Conclusion


A model has been developed to predict surface temperature of pavements in function of their albedo based on energy balance at the surface of the pavement. The model has been validated using data from a test section in Beaver Creek, Yukon. A method to evaluate the technical properties of HAS regarding 250 durability and skid resistance has been proposed.

High speed skid resistance and water management

