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ABSTRACT 

Previous research shows that various geometric and non-geometric road elements significantly 
affect collision occurrence and severity on highways and arterial roads; however, little is known 
about how these elements affect the safety performance of urban residential collector roads. 
Therefore, this study investigated the impact of these elements on collision occurrence and 
collision severity for urban residential collector roads. An extensive data collection effort was 
conducted to synthesize collision records, traffic counts, road geometry, traffic control and other 
features of residential collector road segments in the city of Edmonton (COE), Alberta, Canada. 
Negative binomial safety performance functions (SPFs) were developed for total collision 
occurrence and collision severity using four years of data. The proposed models were estimated 
using the maximum likelihood estimation technique under a Bayesian context. An outlier test 
was performed to improve the models’ goodness-of-fit. Scaled Deviance (SD) and the Pearson 

2χ statistic were used to assess the models’ goodness-of-fit. Results reveal that the exposure 
covariates (segment length and traffic volume) are highly significant and positively related to the 
predicted collisions in all of the SPFs. The property damage only (PDO) collision model has the 
same significant covariates as the total collisions model, indicating that the number of PDO 
collisions is predominantly higher than other collisions. For predicted total and PDO collisions, 
there is a statistically significant positive relationship between collisions and access-point 
density, stop-controlled intersection density, the presence of a horizontal curve, the presence of a 
licensed premises, the presence of a seniors’ centre and the presence of on-street parking. In 
contrast, there is a significant negative relationship between the presence of median and 
predicted total and PDO collisions. For severe (i.e., fatal and injury) collisions, there is a 
statistically significant positive relationship between collisions and segment length, traffic 
volume, number of lanes, access-point density, stop-controlled intersection density, bus stop 
density, the presence of a horizontal curve, the presence of a licensed premises, the presence of a 
seniors’ centre and the presence of on-street parking. On the contrary, there is a significant 
negative relationship between predicted severe collisions and the presence of a median, the 
presence of a centre line and the presence of manned enforcement sites. From a model 
application perspective, the city authority could use this information to assess the associated 
safety risk of different geometric and non-geometric road elements on residential collector roads 
and, hence, prioritize collision prone road segments. 

Keywords: Safety performance functions, negative binomial distribution, residential collector 
roads, maximum likelihood estimation, Bayesian approach. 
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1. INTRODUCTION 

Safety performance functions (SPFs), also known as collision prediction models (CPMs), are 
widely considered a key tool for estimating the safety levels of different road entities (i.e., 
intersections and road segments). SPFs are mathematical models statistically developed to link 
collision occurrence to a roadway’s traffic and geometric characteristics. There are several key 
reasons that SPFs are widely used in safety studies: i) SPFs can be used in a Bayesian framework 
to address the regression-to-the-mean bias; ii) over-dispersion due to unobserved or unmeasured 
heterogeneity in collision data can be addressed using SPFs; iii) SPFs account for the 
fundamental nonlinear relationship between collision frequency and traffic volume [1]; iv) SPFs 
help analysts understand the relationships between collisions and particular attributes [2, 3, 4, 5]; 
v) SPFs help analysts to predict site-specific collisions and, hence, identify and rank road 
segments that are truly hazardous [6, 7, 8]; and vi) SPFs help analysts to evaluate the 
effectiveness of various safety countermeasures by facilitating the Empirical Bayesian (EB) and 
Full Bayesian (FB) approach [9, 10, 11].  

Various SPFs were developed in the literature to assess the effects of various geometric and non-
geometric road elements on collision occurrence and severity on highways [12, 13, 14, 15] and 
arterial roads [3, 16, 17, 18]. For instance, Ahmed et al. [12] examined the safety effects of 
roadway geometry on collision occurrence along mountainous freeways and found that roadway 
geometry is significantly associated with collision risk. Furthermore, results revealed that a 
highway segment with a higher degree of curvature, wider medians and a greater number of 
lanes appears to be associated with a lower collision rate. Haleem and Gan [13] investigated the 
effects of road geometric, traffic, environmental, vehicle-related and driver-related 
characteristics on collision severity on urban freeways. The authors found that the at-fault 
drivers’ age, traffic volume, distance of the collision to the nearest ramp, vehicle type, side of 
impact and percentage of trucks involved significantly influenced collision severity on urban 
freeways. A study by Easa and You [14] focused on the effects on collision occurrence of the 
three dimensional alignments (i.e., horizontal and vertical curve and grade) of two-lane rural 
highways in Washington state. Results indicated that the degree of curvature, roadway width 
(lanes plus shoulders), access density, product of grade value and grade length, road section 
length and traffic volume are the most significant predictors of collisions on horizontal curves on 
three dimensional road alignments. An earlier study by Sawalha and Sayed [16] included the 
development of SPFs to estimate the safety performance of urban arterial roadways in the greater 
Vancouver regional districts. The authors found that traffic- and road-related variables (i.e., 
traffic volume, un-signalized intersection density, driveway density, pedestrian crosswalk 
density, number of traffic lanes, type of median and type of land-use) had a significant effect on 
collision occurrence.  

A recent study by Manuel et al. [5] investigated the safety effects of road width on urban 
collectors in the city of Edmonton (COE); however, little was derived from that study regarding 
how other geometric and non-geometric road elements affect the safety performance of urban 
residential collector roads. Therefore, the present study investigated the impact of these elements 
on total collision occurrence and collision severity on urban residential collector roads. Several 
SPFs were developed for total collision occurrence and collision severity. An extensive data 
collection effort was made to synthesize collision records, traffic counts, road geometry, traffic 
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control and other feature data of residential collector road segments in the COE, Alberta, 
Canada. The widely accepted negative binomial (NB) distribution assumption was used to 
develop the SPFs. An outlier test was performed to improve the models’ goodness-of-fit.  
 
2. DATA DESCRIPTION 

A comprehensive data set was collected to investigate the effect of different geometric and non-
geometric characteristics on total collision occurrence and collision severity. This involved 
combining multiple datasets either from the COE databases or from Google Maps [19]. Among 
the COE datasets, road geometric variables were collected manually from the Geo-Engineering 
Access (GEA) database. Geo-coded datasets of collision, traffic volume and speed surveys were 
spatially linked using the COE’s Enterprise Geographic Information System (GIS), known as 
GeoMedia Professional [20]. The study area and all the COE residential collector roads are 
illustrated in Figure 1.  

 

Figure 1: Map Showing all Residential Collectors Roads (red lines) in the City of 
Edmonton 
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For this study, the unit of analysis was urban residential collector road segments between 
collector-collector and (or) collector-arterial intersections. One specific challenge faced during 
data preparation was that the above road-segment definition differs from the road-segment 
definition in the COE Linear Referencing System (LRS) datum. Figure 2(a) shows the LRS road-
segment definition: a stretch of road between two intersections, regardless of intersection type 
(arterial-collector, collector-collector or collector-local). Alternatively, Figure 2(b) shows the 
new definition of road segment: seven LRS road segments (marked by the square) become one 
road segment under the new definition adopted in the current study. For the purpose of analysis, 
all relevant data was linked to each road segment.  

  

 

(a) LRS Road Segment Definition 

 

(b) New Road Segment Definition 

Figure 2: Illustration of Road Segment Definition 

2.1 Collision Data 

Collision data was obtained from the COE’s Motor Vehicle Collision Information System 
(MVCIS) database. This database is populated with police records of collisions that occurred on 
public roads within the COE boundary. The number of collisions is the most objective measure 
of a roadway’s safety performance. For the purpose of this study, collision data needed to be in a 
spatial format to facilitate linking with other datasets. Collision data from January 2006 to 
September 2012 was available in geo-coded format. The literature suggests that the period used 
to identify black spots (also known as hazardous road segments or hot spots) varies from 1-5 
years. A period of 3-5 years is frequently used in the literature for hot spot identification. 
Research by Cheng and Washington [21] suggests that the increased accuracy obtained by using 
a period longer than 3 years is marginal and declines rapidly as the length of the period increases. 
In the current study, collision data from the last four years was used, with the calendar year 
defined as October to September, because the latest available data at the time of the study was 
September 2012. In addition to total collisions, two collision severities were considered: severe 
collisions, consisting of injury and fatal collisions, and property-damage-only (PDO) collisions. 
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2.2 AADT Data 

The COE collects traffic data using the Vaisala Nu-Metrics Portable Traffic Analyzer NC200, 
which provides vehicle count and classification data. The device can be installed and removed in 
minutes and is less noticeable to drivers, which results in more accurate information. The traffic 
count data was geo-coded with estimated traffic volume (AADT) values. The geo-coded traffic 
count data was spatially linked to the road segments for the analysis.  

2.3 Road Geometry and Other Attributes 

Special features, such as school zones, seniors’ centres, bus stops and licensed premises, were 
considered in the current study to assess the effects of different land use patterns on collision 
occurrence. A travel distance of 400 metres (m) was taken along the roads from the point of 
these special features to indicate the presence or absence of these features on a road segment. A 
spatial tool, known as the Feature Manipulation Engine (FME), was used for data aggregation. 
The roadway geometric data for segment length, number of access points and presence of 
manned enforcement was extracted from the COE’s Spatial Land Inventory Management 
(SLIM) database through the GeoMedia GIS software. Data for the number of lanes, lane width, 
presence of a horizontal curve, presence of lane markings, presence of a midblock change, 
number of intersections (signalized, stop-controlled, uncontrolled), presence of a bicycle lane, 
presence of a median, presence of a centre line and presence of parking in the road segment was 
manually extracted from the COE’s GEA database and Google Maps [19].  

2.4 Summary 

Based on the road segment definition mentioned earlier, it was determined that the COE has a 
total of 1,400 residential collector road segments. After linking all of the related data discussed 
above, it was found that not all of the data was available for all of the road segments. 
Specifically, traffic count data was limited for the residential collector road segments. A total of 
406 road segments were found to have the data required to perform the safety analysis; therefore, 
those 406 road segments were used to develop the SPFs. A statistical data summary is shown in 
Table 1. 
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Table 1: Statistical Summary of the Dataset 

Variables Mean Std. Deviation Minimum Maximum 
Collision Data 
Total Collision Frequency 8.825 10.740 0 120 
Severe Collisions 1.227 1.872 0 12 
PDO Collisions 7.599 9.310 0 108 
Traffic Flow Data 
Traffic Flow (AADT) 3912.32 3172.67 100 21500 
Road Geometry Data 
Length (m) 634.662 433.512 88.965 3435.579 
Access-point density  6.762 5.113 0 24.741 
Number of Lane 2.422 0.816 2 4 
Road Width (m) 11.829 2.757 6 20.2 
Presence of Median 
(=1, if present, =0, else) 

0.150 0.358 0 1 

Presence of Mid-block Change 
(=1, if present, =0, else) 

0.180 0.384 0 1 

Presence of Horizontal Curve 
(=1, if present, =0, else) 

0.426 0.495 0 1 

Signalized Intersection Density  0.032 0.272 0 3.093 
Stop-controlled Intersection Density  1.273 2.246 0 12.331 
Uncontrolled Intersection Density 5.580 4.769 0 26.873 
Presence of Centre Line 
(=1, if present on two sides, =0, else) 

0.409 0.492 0 1 

Non-geometric Data 
Presence of Bike Path 
(=1, if present, =0, else) 

0.106 0.308 0 1 

No Street Parking 
(=1, if yes, =0, else) 

0.382 0.486 0 1 

Parking in One Side 
(=1, if yes, =0, else) 

0.101 0.302 0 1 

Parking in Both Side 
(=1, if yes, =0, else) 

0.512 0.500 0 1 

Presence of Bus Stop 
(=1, if present, =0, else) 

0.931 0.254 0 1 

Bus Stop Density 11.426 8.804 0 68.372 
Presence of Licensed Premises 
(=1, if present, =0, else) 

0.542 0.499 0 1 

Presence of School Zone 
(=1, if present, =0, else) 

0.525 0.500 0 1 

Presence of Seniors' Centre 
(=1, if present, =0, else) 

0.158 0.365 0 1 

Presence of Manned Enforcement 
(=1, if present, =0, else) 

0.655 0.476 0 1 
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3. METHODOLOGY 

3.1 Model Specification 

As collisions are discrete, nonnegative and random events, the Poisson distribution is commonly 
used to develop the SPF. Let, iY  denote the number of collisions at the road segment 

)...,,3,2,1( nii =  (for the present dataset, 392=n , because 14 road segments were identified as 
outliers and were subsequently removed from the dataset). Assume that the number of collisions 
at the n road segments is independent and that 

)(~| iii PoissonY θθ           (1) 
Where, iθ is the Poisson parameter. The probability of a road segment i  having iy collisions is 
given by 

!
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The Poisson parameter, iθ  is commonly specified as an exponential function of road segment-
specific attributes, such as exposure, traffic and geometric characteristics [22], and is usually 
expressed as  

)(exp 'βθ ii X=           (3) 
Where, '

iX  is a row vector of covariates representing segment-specific attributes and β  is a 
vector of regression parameters to be estimated from the data. In the Poisson regression model, it 
is assumed that the mean and variance of the count variables are constrained to be equal, such 
that 

iii YVarYE θ== )()( .          (4) 
 
However, when modeling collision count datasets, this assumption is often violated as most 
collision data is likely to be over-dispersed (the variance is greater than the mean) [23, 24, 25]. A 
Poisson distribution for over-dispersed data can underestimate the standard errors of the 
regression coefficients, which can lead to inflated values of the t-test, thereby, affecting the 
significance level of the model regression coefficients. This leads to an incorrect selection of 
covariates resulting in poor model fits.  
 
To overcome the problems associated with the Poisson regression models, several researchers 
proposed the use of the Poisson-Gamma (PG) hierarchy leading to the NB regression model [24]. 
The main reason for the extensive use of this model is that it is simple to compute, since the 
Gamma distribution is a conjugate prior to Poisson leading to a Gamma posterior distribution, 
which considerably simplifies the posterior analysis. To address over-dispersion for unobserved 
or unmeasured heterogeneity, it is assumed that 

)(exp iii uµθ =           (5) 

iii u+= )(ln)(ln µθ           (6) 
Where, iµ  is an exponential function of segment-specific attributes, such as exposure, traffic and 
geometric characteristics. 
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Where, jiX  denotes the matrix of covariates, j is the number of variables )...,,3( Jj = , L is the 
road segment length, V is traffic volume (AADT), 0β is the intercept, and 1β , 2β , and jβ denote 
the vector of regression coefficients. The term )(exp iu  represents a multiplicative random effect 
due to unobserved heterogeneity, which follows a Gamma distribution with an inverse dispersion 
parameter (also known as the shape parameter), k .  

),(~|)(exp kkGammakui          (8) 
The dispersion (or over-dispersion) parameter is usually referred to as  

k
1

=α             (9) 

The probability density function of the PG or NB model is given by 
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Under the PG or NB model, the mean and variance are given by 
iiYE µ=)(            (11) 

κ
µ

µ
2

)( i
iiYVar +=           (12) 

 
To assess the safety performance, three NB SPFs were developed: 

• Model for total collisions 
• Model for severe (injury and fatal) collisions  
• Model for PDO collisions 

 
The statistical software SAS version 9.3 [26] was used to obtain the maximum likelihood 
estimates of the model parameters. The parameters of the models were estimated using the 
GENMOD procedure [26].  
 
3.2 Model Assessment 

Several measures can be used to assess the models’ goodness-of-fit. Two commonly used 
measures are the Scaled Deviance (SD) and the Pearson 2χ statistic. SD is defined as the 
likelihood ratio test statistic measuring twice the difference between the log-likelihoods of the 
studied model and the full or saturated model. Both the SD and Pearson 2χ statistic have exact 

2χ  distributions for normal linear models, but are asymptotically 2χ distributed with k degrees 
of freedom for other distributions of the exponential family, where k is the sample size minus the 
number of estimated parameters [3]. McCullagh and Nelder [27] showed that for the NB error 
structure, the SD statistic is as defined as 
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The Pearson 2χ statistic is defined as 
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Both the SD and Pearson 2χ statistic are asymptotically 2χ distributed with pn − degrees of 
freedom [28], where n is the sample size and p  is the number of parameters. The goodness-of-
fit measures can also be obtained using the GENMOD procedure [26]. 
 
3.3 Outlier Analysis 

Datasets often have unusual or extreme observations (known as outliers), which can lead to 
biased and (or) unexpected results. An outlier (also known as an abnormality, a discordant, a 
deviant, an anomaly, etc.) is a data point that is vastly different from the majority of the other 
data points. According to Hawkins [29], an outlier is an observation that deviates so much from 
the other observations that it arouses suspicions that it was taken by a different mechanism. In 
the current study, to observe the anomalies in the available dataset, an outlier analysis was 
conducted using the methodology suggested by Sawalha and Sayed [3] with Cook's distance 
measure. This measure takes into account both leverage and influence during outlier 
identification. For more information regarding the outlier analysis, refer to Sawalha and Sayed 
[3]. By using this methodology, 14 road segments were identified as outliers, and were 
subsequently removed from the dataset.   
 
4. RESULTS AND DISCUSSIONS 

4.1 Model for Total Collisions 
 
This model was developed for total collisions based on traffic volume (AADT), geometric road 
characteristics and other non-geometric road characteristics. Table 2 represents the model’s 
parameter estimates, standard errors (SE), p-values and goodness-of-fit measures.   
 
The over-dispersion parameter is statistically significant, justifying the NB assumption. The SD 
and Pearson 2χ -statistics are 444.253 and 411.856, respectively. With 381 (=392-11) degrees of 
freedom and at the 99% confidence level,  the SD and Pearson 2χ  statistics are smaller than the 
critical 2χ , indicating that the model fits the data well. 
 
The modeling results reveal that traffic volume (AADT) and length are statistically significant at 
a 95% confidence level and positively correlated with total collisions. According to the 
parameter estimates, there is a 5.8% increase in predicted collisions per 10% increase in traffic 
volume. In terms of length, there is a 6.5% increase in predicted collisions per 10% increase in 
length.  
 
There is a statistically significant positive relationship between collisions and access-point 
density, stop-controlled intersection density, the presence of a horizontal curve, the presence of a 
licensed premises, the presence of a seniors’ centre and the presence of on-street parking. 
According to the parameter estimates, a 1% increase in access-point density and stop-controlled 
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intersection density increases collisions by 2.1% and 3.6%, respectively. Literature also suggests 
that road segments with a large number of access points have a significant impact on, and are 
positively correlated with, collision frequency [30].  
 
Table 2: Parameter Estimates, Standard Errors (SE), p-values and Goodness-of-Fit 
Measures of the Total Collisions Model 
 

ln(𝜇) = −3.0291 + 0.6521 ln(𝐿) + 0.5857 ln(𝑉) + 0.0211 𝐴𝑃𝐷 − 0.4233𝑃𝑀 + 0.1607𝐻𝐶
+ 0.0352𝑆𝐶𝐼𝐷 + 0.4113𝐿𝑃 + 0.234𝑃𝑆𝐶 + 0.2956𝑃𝑂𝑆 + 0.2224𝑃𝐵𝑆 

DF Scaled Deviance Pearson 
2χ  381,01.0

2χ  
Shape 
Parameter, k 

381 444.253 411.856 448.142 5.61 
Parameter Estimate SE p-value 
Intercept -3.0291 0.3744 <.0001 
Length ( )ln(L ) 0.6521 0.0551 <.0001 
AADT ( )ln(V ) 0.5857 0.0439 <.0001 
Access-point density (APD) 0.0211 0.0073 0.0036 
Presence of Median (PM) -0.4233 0.0985 <.0001 
Presence of Horizontal Curve (HC) 0.1607 0.0676 0.0174 
Stop-controlled Intersection Density (SCID) 0.0352 0.0145 0.0149 
Licensed Premises (LP) 0.4113 0.0656 <.0001 
Presence of Seniors’ Centre (PSC) 0.234 0.0829 0.0048 
Parking One Side (POS) 0.2956 0.106 0.0053 
Parking Both Side (PBS) 0.2224 0.0684 0.0011 
Dispersion, 1/k 0.1781 0.0259  

 
There is a significant increase (17.4%) in the predicted collisions with the presence of a 
horizontal curve. A possible rationale for this finding is that roads designed with a horizontal 
curve accommodate the adequate centripetal force to neutralize the centrifugal force created by a 
vehicle for a certain speed. If a vehicle speed crosses that design speed, then ran-off-road 
collisions might occur. Furthermore, the presence of ground snow, which is common in 
Edmonton, makes the road slippery and may skid the wheel of a vehicle entering a horizontal 
curve, hence, increasing the probability of a collision.  
 
In terms of land use, the presence of a licensed premises increases collisions by 50.8%; this 
finding indicates that the collision risk increases within the vicinity of a licensed premises. The 
presence of a seniors’ centre increases collisions by 26.4%. A seniors’ centre is a facility that 
introduces vulnerable road users; therefore, collisions are more likely to occur in the vicinity of a 
seniors’ centre. 
 
On-street parking is statistically significant and positively correlated with collision occurrence. 
According to the parameter estimates, parking on one side of the road increases collisions by 
34.3%, while parking on both sides of the road increases collisions by 24.9% (compared to no 
street parking); this finding is intuitive and in line with previous evidence [2]. By contrast, there 
is a significant negative relationship between predicted collisions and the presence of a median. 
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According to the parameter estimates, the presence of a median decreases collisions by 52.7%, 
which is a finding consistent with previous studies [31]. This result is expected and intuitive 
because medians help to prevent conflicts by separating opposing lanes of traffic and providing 
refuge for pedestrians and bicyclists when crossing the road.   
 
4.2 Model for Severe Collisions 

This model was developed for severe (fatal and injury) collisions based on traffic volume 
(AADT), geometric road characteristics and other non-geometric road characteristics. Table 3 
represents the model’s parameter estimates, standard errors (SE), p-values and goodness-of-fit 
measures. 
 
Table 3: Parameter Estimates, Standard Errors (SE), p-values and Goodness-of-Fit 
Measures of the Severe Collisions Model 
 

ln(𝜇) = −6.9559 + 0.7779 ln(𝐿) + 0.8178 ln(𝑉) + 0.2095𝑁𝐿 − 0.8168𝑃𝑀 + 0.0605𝑆𝐶𝐼𝐷
+ 0.0122𝐵𝑆𝐷 + 0.58𝐿𝑃 + 0.3417𝑃𝑆𝐶 − 0.2914𝑃𝑀𝐸 − 0.3303𝑃𝐶𝐿 

DF Scaled Deviance 
Pearson 

2χ  
381,05.0

2χ  
Shape 
Parameter, k 

381 407.894 411.6473 427.513 12.953 
Parameter Estimate SE p-value 
Intercept -6.9559 0.6928 <.0001 
Length ( )ln(L ) 0.7779 0.0956 <.0001 
AADT ( )ln(V ) 0.8178 0.0903 <.0001 
Number of Lane (NL) 0.2095 0.0739 0.0046 
Presence of Median (PM) -0.8168 0.1842 <.0001 
Stop-controlled Intersection Density (SCID) 0.0605 0.0211 0.0041 
Bus Stop Density (BSD) 0.0122 0.0067 0.07 
Licensed Premises (LP) 0.58 0.1307 <.0001 
Presence of Seniors’ Centre (PSC) 0.3417 0.133 0.0102 
Presence of Manned Enforcement (PME) -0.2914 0.1383 0.0351 
Presence of Centre Line (PCL) -0.3303 0.1319 0.0123 
Dispersion, 1/k 0.0772 0.0724  

 
The over-dispersion parameter is statistically significant, justifying the NB assumption. The SD 
and Pearson 2χ -statistics are 407.894 and 411.6473, respectively. With 381 (=392-11) degrees 
of freedom and at the 95% confidence level,  the SD and Pearson 2χ  statistics are smaller than 
the critical 2χ , indicating that the model fits the data well. 
 
The modeling results reveal that traffic volume (AADT) and length are statistically significant at 
a 95% confidence level and positively correlated with severe collisions. According to the 
parameter estimates, there is an 8.1% increase in predicted severe collisions per 10% increase in 
traffic volume. In terms of length, there is a 7.7% increase in predicted severe collisions per 10% 
increase in length. These results are consistent with previous study findings [2, 31].  
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There is a statistically significant positive relationship between severe collisions and bus stop 
density, stop-controlled intersection density, the presence of a licensed premises and the presence 
of a seniors’ centre. According to the parameter estimates, a 1% increase in bus stop density and 
stop-controlled intersection density increases severe collisions by 1.2% and 6.2%, respectively. 
Furthermore, there is a significant increase (23.3%) in predicted severe collisions because of an 
increased number of lanes. A possible rationale for this finding is that more lanes increases 
traffic flow and traffic conflict areas, hence, increasing the probability of severe collisions. In 
terms of land use, the presence of a licensed premises increases severe collisions by 78.6%, 
while the presence of a seniors’ centre increases severe collisions by 40.7%.  
 
By contrast, there is a significant negative relationship between predicted severe collisions and 
the presence of a median, the presence of a centre line and the presence of manned enforcement. 
According to the parameter estimates, the presence of a median and the presence of a centre line 
decreases severe collisions by 55.8% and 28.1%, respectively. The presence of manned 
enforcement decreases severe collisions by 25.3%, which conforms to the findings by Tay [32]. 
The presence of manned enforcement deters people from driving aggressively or erratically, 
thereby, making drivers more cautious and compliant to the posted speed limit, hence, reducing 
the probability of severe collisions.      
 
4.3 Model for PDO Collisions 

This model was developed for PDO collisions based on traffic volume (AADT), geometric road 
characteristics and other non-geometric road characteristics. Table 4 represents the model’s 
parameter estimates, standard errors (SE), p-values and goodness-of-fit measures.   
 
The over-dispersion parameter is statistically significant, justifying the NB assumption. The 
shape parameter k is significant, demonstrating the presence of over-dispersion in the data. The 
SD and Pearson 2χ -statistics are 444.4464 and 415.7685, respectively. With 381 (=392-11) 
degrees of freedom and at the 99% confidence level,  the SD and Pearson 2χ  statistics are 
smaller than the critical 2χ , indicating that the model fits the data well. 
 
The modeling results reveal that traffic volume (AADT) and length are statistically significant at 
95% confidence level and positively correlated with PDO collisions. According to the parameter 
estimates, there is 5.6% increase in predicted PDO collisions per 10% increase in traffic volume. 
In terms of length, there is 6.6% increase in predicted PDO collisions per 10% increase in length. 
 
There is a statistically significant positive relationship between collisions and access-point 
density, stop-controlled intersection density, the presence of a horizontal curve, the presence of a 
licensed premises, the presence of a seniors’ centre and the presence of on-street parking. 
According to the parameter estimates, a 1% increase in access-point density and stop-controlled 
intersection density increases PDO collisions by 2.2% and 3.2%, respectively. Furthermore, there 
is a significant increase (18.8%) in the predicted PDO collisions because of the presence of a 
horizontal curve.  
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Table 2: Parameter Estimates, Standard Errors (SE), p-values and Goodness-of-Fit 
Measures of the PDO Collision Model 
 

ln(𝜇) = −3.0014 + 0.66 ln(𝐿) + 0.5645 ln(𝑉) + 0.0221𝐴𝑃𝐷 − 0.4079𝑃𝑀 + 0.1719𝐻𝐶
+ 0.0318𝑆𝐶𝐼𝐷 + 0.3748𝐿𝑃 + 0.2378𝑃𝑆𝐶 + 0.3201𝑃𝑂𝑆 + 0.2539𝑃𝐵𝑆 

DF Scaled Deviance 
Pearson 

2χ  
381,01.0

2χ  
Shape 
Parameter, k 

381 444.4464 415.7685 448.142 5.28 
Parameter Estimate SE p-value 
Intercept -3.0014 0.3921 <.0001 
Length ( )ln(L ) 0.66 0.0579 <.0001 
AADT ( )ln(V ) 0.5645 0.046 <.0001 
Access-point density (APD) 0.0221 0.0076 0.0035 
Presence of Median (PM) -0.4079 0.1038 <.0001 
Presence of Horizontal Curve (HC) 0.1719 0.0709 0.0154 
Stop-controlled Intersection Density (SCID) 0.0318 0.0151 0.0353 
Licensed Premises (LP) 0.3748 0.0691 <.0001 
Presence of Seniors’ Centre (PSC) 0.2378 0.087 0.0063 
Parking One Side (POS) 0.3201 0.1113 0.004 
Parking Both Side (PBS) 0.2539 0.0718 0.0004 
Dispersion, 1/k 0.1893 0.0284  

 
In terms of land use, the presence of a licensed premises increases PDO collisions by 45.5%, 
while the presence of a seniors’ centre increases PDO collisions by 26.8%. On-street parking is 
also statistically significant and positively correlated with PDO collisions. According to the 
parameter estimates, parking on one side of the road increases PDO collisions by 37.7%, while 
parking on both sides increases PDO collisions by 28.9% (compared to no street parking). By 
contrast, there is a significant negative relationship between predicted PDO collisions and the 
presence of a median. According to the parameter estimates, the presence of a median decreases 
PDO collision by 33.5%.  
 
5. CONCLUSION AND FUTURE RESEARCH 

This paper described modeling efforts to analyze Edmonton’s residential collector road 
segments. An extensive data collection effort was made to synthesize collision records, traffic 
counts, road geometry, traffic control and other feature data of Edmonton’s residential collector 
roads. A total of 406 road segments were identified as having the complete dataset required to 
develop the SPFs. Three SPFs were developed: i) a total collisions model; ii) a severe collisions 
model; and iii) a PDO collisions model. The results reveal that the exposure covariates (segment 
length and traffic volume) are highly significant and positively related to the predicted collisions 
in all of the models. The PDO collision model has the same significant covariates as the total 
collisions model, indicating that the number of PDO collisions is predominantly higher than 
other collisions. For predicted total and PDO collisions, there is a statistically significant positive 
relationship between collisions and access-point density, stop-controlled intersection density, the 
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presence of a horizontal curve, the presence of a licensed premises, the presence of a seniors’ 
centre and the presence of on-street parking. By contrast, there is a significant negative 
relationship between predicted total and PDO collisions and the presence of a median.  
 
For severe collisions, there is a statistically significant positive relationship between collisions 
and segment length, traffic volume, number of lanes, access-point density, stop-controlled 
intersection density, bus stop density, the presence of a horizontal curve, the presence of a 
license premises, the presence of a seniors’ centre and the presence of on-street parking. On the 
contrary, there is a significant negative relationship between predicted severe collisions and the 
presence of a median, the presence of a centre line and the presence of manned enforcement 
sites. In contrast to the total and PDO collisions, the presence of a centre line is significant and 
negatively related to severe collisions. This has important implications for transportation 
authorities: most of the road segments in the current study are two-lane roads; therefore, a centre 
line pavement marking might better guide drivers to avoid head-on collisions, which are often 
severe. Similarly, the presence of a manned enforcement site on a road segment is significant and 
negatively related to severe collisions, indicating that the presence of manned enforcement 
reduces speeding and subsequent severe collisions.  

From a model application perspective, the city authority could use this information to assess the 
associated safety risk of different geometric and non-geometric road elements on residential 
collector roads and, hence, prioritize collision prone road segments. 

The results presented in this paper are based on a single dataset. Even though these results are 
intuitive and conform to those in the literature, further research with different datasets is required 
to confirm the paper's findings. The work in this paper could be extended by focusing on 
different collision types (e.g., angle, rear end, head on, etc.), which may provide a much more 
clear and detailed understanding of safety conditions and help transportation authorities to 
estimate the associated safety risk and facilitate the selection of potential countermeasures for 
specific collision types (a particular countermeasure is often tied to a particular collision type).  
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