UNAVERSITY OF

Evaluation of Signalized Intersections Using Transit Vehicle's AVL/APC Data

Introduction

Intersection performance evaluation is very important for transportation authorities, in particular, when prioritizing the allocation of resources for intersection improvements. The performance of signalized intersections is commonly quantified in terms of the average delay and the maximum queue length
Intersection delay and queue length are generally estimated using software tools, which require empirical data such as traffic counts, signal timings, pedestrian volumes, traffic stream composition, and saturation flow rates. The accuracy of intersection performance analysis.

The objective of this research is to propose a methodology to use archived transit Automatic Vehicle Location (AVL)/Automatic Passenger Count (APC) data for estimating the delay and queue length at signalized intersection approaches
containing a near-side transit station. The proposed methodology eliminates the need for empirical data for intersection performance evaluation.

AVL/APC Data

AVL/APC systems use GPS sensors and passenger
Track the position of the transit vehicle
Create an archived database containing records associated with events of interest

Common event types:

- Scheduled Stops: transit vehicle makes a scheduled stop at a transit station and may board and/or discharge passengers Unscheduled Stops: transit vehicle stops at a location that is not
transit station
Drive through: transit vehicle passes by a transit station without stopping

Intersections with Far-sided Transit Stations
Yang and Hellinga proposed a methodology to use AVL/APC data to estimate the performance of signalized intersections with far-sided transit stations.

- Candidate Boundary Line

Intersections with Near-sided Transit Stations
A transit vehicle stopping at station to serve passengers generates a Scheduled Stop record in the archived AVL/APC data.
The objective is to utilize transit vehicles as probe vehicles to estimate the stopped delay

Dwell Time Model

- There is significant variability in observed average dwell time as function of the number of passenger boarding (Nb) and alighting (Na)
A two-staged dwell time estimation model is proposed

Using unscheduled stop event type \qquad ,

- Stopped delay is plotted versus distance for each route segment (for all observations)
A boundary line is fitted to the unscheduled stop observations that separates the stop events due to signalized intersection from other causes of unscheduled stop such as parking maneuver or other geometric characteristics.

$$
\overline{D W}=15.47=1.99 \mathrm{Nb}+0.77 \mathrm{Na}
$$

Dwell Time Model (continued)
Second Stage:

- Model the variations in individual observed dwell times using Poisson distribution $(f(x))$
Adjust the original Poisson model ($f^{\prime}(D W)$) considering that the dwell time cannot be longer than the total stop time (TS)
$f(X)=P(X=D W)=\frac{\overline{D W}^{D W_{e}} e^{-\overline{D W}}}{D W!}$
$f^{\prime}(D W)=P(D W<X \leq D W+\delta \mid X \leq T S)=\frac{f(D W)}{F(T S)}$

Red Interval Estimation

Stopped Delay Attribute

> For unscheduled stop observations the magnitude of stopped delay is equal to the observation's otolal stop time (TS)

For scheduled stop observations the magnitude
determined based on the scenarios described earlier

Boundary Line Fitting

Scheduled and Unscheduled observations are aggregated
A boundary line is fitted to the data using Yang and Hellinga's methodology The observations under the boundary line are used to estimate the
performance of signalized intersections

Evaluation of the Proposed Methodology

AVL/APC data can be used to evaluate the performance of intersections Evaluation showed delay and queue lengths can be measured accurately Further evaluation is needed for approaches on which transit vehicles make boundary line fitting algorithm

