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ABSTRACT 

The Mechanistic Empirical Pavement Design Guide (MEPDG) is expected to be adopted by 
most transportation agencies and pavement engineers in the next few years. As a part of 
mechanistic-empirical pavement design procedure, it is required to locally calibrate distresses to 
match up analysis results with local measured data. However, it has been a challenging task for 
pavement practitioners and experts to calibrate distress models inherited in the design 
procedure due to the way the M-E design tool is processing the data. The literature review 
showed that the vast majority of calibration techniques currently in use are solely based on 
statistical analysis and trial and error approach for different combination of local calibration 
coefficients to find the best set that produces results closer enough to observed data in the field. 
This approach lack accuracy due to limited trials that can be evaluated and the absence of 
mathematical algorithm to guide the trial selection at the start of each MEPDG analysis cycle to 
find the optimum set of calibration coefficients.  

This study will investigate the possibility of using genetic algorithm (GA) to calibrate MEPDG 
distresses. Framework of calibration system will be designed to simulate the MEPDG calibration 
process within the genetic algorithm context. Site specific data from different locations will be 
used as inputs to MEPDG and initial calibration coefficient seeds will be presented to the 
system to produce initial distress output and compared to measured field data. The genetic 
algorithm will then be employed to guide the selection of new calibration set each time analysis 
cycle is performed and crossover and mutation processes will be used to produce new sets of 
chromosomes and presented to the calibration system for new evaluation cycle in an automated 
process to overcome drawbacks of the traditional trial and error approach. Calibration 
framework design and development will be discussed in this study along with results and 
advantages of using the genetic algorithm approach over traditional ones. 
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INTRODUCTION 

Major Changes have been made in the way pavements are modeled and analyzed in the newly 
developed Mechanistic-Empirical Pavement Design Guide (MEPDG) compared with the 1993 
American Association of State Highway and Transportation Officials (AASHTO) Pavement 
Design Guide. The (MEPDG) is proposed as an advanced pavement design tool that integrates 
up-to-date pavement practices. Since MEPDG was released in 2004, transportation agencies 
have continuously worked on calibrating and evaluating the program with regard to 
implementation for provincial and local agencies in Canada.  

MEPDG requires three categories of input data: traffic, climate, and pavement structure (1). 
There are also three levels of data precision: Level 1 requires site-specific data based on 
laboratory or field tests, Level 2 inputs are derived from other material properties measured in 
the laboratory or field tests, and Level 3 is estimated from designers’ experience. 

 

BACKGROUND 

Today, many provincial and local agencies are collecting pavement condition data (e.g. rutting, 
cracking and IRI) using automatic road surveyors in a continuous manner across the entire 
highway network. These data, often stored in the pavement management systems (PMS), 
indicate not only the average but also the variation of the pavement performance over age. 
These data can be used in the local evaluation of the MEPDG design reliability as reported 
previously in several studies (2 and 3). 

Within the MEPDG context, functional performance for all pavements types is defined by time 
(pavement age) dependent pavement roughness quantified as a predicted International 
Roughness Index (IRI). IRI is predicted using a regression equation with computed pavement 
distresses, initial IRI, and “site/climate” factors as the primary independent variables. The 
roughness in M-E design is measured using the following equations (4) 
 

 

where: 
IRIo  = Initial IRI, in./mi,  
SF   = Site factor,  
FCTotal   = Area of fatigue cracking (combined alligator, longitudinal, and reflection cracking in the 

wheel path), percent of total lane area. All load related cracks are combined on an 
area basis-length of cracks is multiplied by 1 ft to convert length into an area basis, 

TC       = Length of transverse cracking (including the reflection of transverse cracks in existing 
HMA pavements), ft/mi, and 

RD  = Average rut depth, in. 
 
and 

 

 
where: 
Age  = Pavement age, yr, 
PI  = Percent plasticity index of the soil, 
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FI  = Average annual freezing index, °F days, and 
Precip. = Average annual precipitation or rainfall, in. 
 
 
As shown in the previous equations, the independent variables are correlated to other 
parameters related to other distresses and climatic parameters that are being 
predicted/calculated within the MEPDG environment and therefore, the IRI model cannot be 
calibrated outside MEPDG and it needs to be executed iteratively to calculate all inputs needed 
for IRI model.  
 
SCOPE AND STUDY OBJECTIVES 

The current study will introduce a new methodology to locally calibrate international roughness 
index (IRI) models included in the MEPDG. The research effort in this study was undertaken 
using the research grade MEPDG (version 1.1). Measured roughness and site specific data 
from different local municipalities in Ontario will be used to calibrate IRI models. Literature 
review revealed that variables such as age, traffic, subgrade condition, road function class, 
pavement thickness are most significant to IRI deterioration models (4). Therefore, selected 
section from various Ontario municipalities PMS database for the study will be classified based 
on design of experiment (DOE) that accounts for factors that are known to highly influence the 
pavement performance. For this study, three parameters were selected to classify the pavement 
condition: 

• Thickness – 3 levels (thin, medium, thick) based on equivalent granular thickness (EGT) 

• Traffic – 3 levels (low, medium, high) based on average annual daily traffic (AADT) 

• Subgrade – 2 levels (weak, strong) based on local knowledge of soil properties 

Three sections in each DOE class as shown in table 1 are selected to represent different 
function classes for local, collector and arterial respectively. The three factors, thickness, traffic 
and subgrade, have different cutoff numbers for each function class and classified in each 
function class based on the distribution of each factor. In some conditions, no matching sections 
were found in the database to represent a particular condition. For example, no local sections 
(0) were found in thin thickness, strong subgrade and medium traffic category and only collector 
and arterial sections were used (0, 1, 1). Material, traffic and site specific inputs for selected 
sections were collected from different PMS database and entered into MEPDG and a total of 42 
MEPDG design models were prepared for each section.  

Table 1: Number of Sections with Records for different DOE Classes 
 

Thickness Subgrade 
Traffic 

 Low Medium High 

RCI 

Thin 
Weak 0, 1, 0 0, 0, 1 1, 1, 1 
Strong 1, 0, 1 0, 1, 1 1, 0, 0 

Medium 
Weak 0, 1, 1 0, 1, 1 0, 1, 1 
Strong 1, 1, 1 1, 1, 1 1, 1, 1 

Thick 
Weak 1, 1, 1 1, 1, 1 1, 1, 1 
Strong 1, 1, 1 1, 0, 1 1, 1, 1 
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PROBLEM STATEMENT 

The literature review revealed that most of the research efforts to calibrate MEPDG models, 
including IRI, are being done mainly based on “trial and error” statistical approach. In other 
word, local roughness calibration coefficients set (C1, C2, C3 and C4) are initially introduced to 
MEPDG and calculated IRI output is compared to measured IRI and the deference is evaluated 
against predefined threshold. Different combinations of calibration coefficients sets are 
repeatedly entered and the set with the least difference is selected as the best calibration 
coefficients set for particular condition. This process lack the mathematical means to guide the 
search for next calibration set based on the previously selected set result. 

Optimization algorithms, including genetic algorithms, are suitable to resolve these problems 
where guidance engine is employed to direct the search for the optimum solution. Kim et al 
carried put a study to use the genetic algorithm to calibrate rut and alligator crack in MEPDG 
(5). The study used apads.exe engine module included in MEPDG to predict future distresses. 
However, this module cannot be used outside the MEPDG context and special software module 
was developed for this study to have apads.exe work as a standalone module and therefore, 
cannot be used for other studies or by public agencies.  

 

METHODOLOGY 

To overcome this problem, a genetic algorithm (GA) framework was prepared to optimize 
calibration coefficients. Initial trials attempt to use linear programming optimization approach 
included with Microsoft Excel software (Solver), however, MEPDG outputs results are in Excel 
format which conflict and prevent Excel solver from executing repetitive trials. Therefore, the 
genetic algorithm was found to be the best optimization technique for this problem.  

The implemented GA framework includes MEPDG engine that receives initial coefficients seeds 
for C1, C2, C3 and C4 from GA and then call MEPDG program, open calibration screen for IRI 
as shown in Figure 1, insert the parameters, execute the analysis based on the passed 
coefficients, close the MEPDG program and read results file to get predicted IRI at different 
ages. It was essential to automate this process so that it can be included in an iterative process 
later within a genetic algorithm as explained in the next section. 

 

 

 

 

 

 

 

Figure 1: MEPDG Screen for entering Roughness Calibration Parameters  

 4 



  

GENETIC ALGORITHM 

Genetic algorithms (GA) are inspired by Darwin's theory about evolution. Algorithm is started 
with a set of solutions (represented by chromosomes) called population. Solutions from one 
population are taken and used to form a new generation. This is motivated by a hope, that the 
new population will be better than the old one. Solutions which are selected to form new 
solutions (offspring) are selected according to their fitness - the more suitable they are the more 
chances they have to reproduce. This is repeated until some condition (for example number of 
populations or improvement of the best solution) is satisfied. The GA has been successfully 
used to solve many optimization problems in the pavement industry (6). This includes solving 
multi-objective pavement maintenance and rehabilitation programming problems at project level 
and network level analysis (7 and 8).  
 
 
Modeling approach 

The genetic algorithm was employed in this study to locally calibrate IRI models included in the 
MEPDG. As shown in Figure 2, the process start by randomly generating four initial seeds 
(chromosomes) for calibration coefficients, each chromosome consists of (C1, C2, C3 and C4) 
representing different roughness calibration coefficients combination. Subsequently each 
chromosome is introduced to the automated MEPDG engine to execute the analysis and store 
roughness results in a database to be used later and pass it back to GA. The advantage of 
storing analysis results the possibility it can be used later if the same chromosome was chosen 
later or generated randomly as part of next generations and save MEPDG reprocess time. The 
genetic algorithm calculates the fitness of each chromosome using the following equations: 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛

𝑀𝑀𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶 𝑀𝑀𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛
∗  100 (𝑤𝑤ℎ𝐹𝐹𝑒𝑒𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 > 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝐶𝐶𝑒𝑒𝐹𝐹𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)   

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶 𝑀𝑀𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝑛𝑛𝐶𝐶𝑛𝑛𝑛𝑛
∗  100 (𝑤𝑤ℎ𝐹𝐹𝑒𝑒𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 < 𝑀𝑀𝐹𝐹𝐶𝐶𝐹𝐹𝐶𝐶𝑒𝑒𝐹𝐹𝐶𝐶 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)   

 
The closer the fitness to 100%, the more the chromosome has chance to survive for next 
generation. The next step is identifying best and worst chromosomes in the current generation. 
The worst chromosome(s) will be killed to leave room for offspring generated as a result from 
crossover and mutation by the best chromosomes. Next, fittest parent’s pair is selected to 
generate new offspring by crossover. Mutation of single chromosome gene was performed on 
random bases only when a random mutation rate exceeds 25%. Mutation of all chromosomes 
was applied when all chromosomes have same fitness. Fitness for new generation 
chromosomes are evaluated again and process is repeated until fitness meets predefined 
accuracy level (accuracy > 95%). Figure 3 shows the interface for the genetic algorithm 
program that has been developed to calibrate the MEPDG roughness.  
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Figure 2: Framework for Genetic Algorithm used in the Calibration  
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Figure 3: Screenshot from Developed Genetic Algorithm Tool for Roughness Calibration    

 
RESULTS 

Table 2 shows the results for the fittest chromosomes for each DOE category. For example, 3 
sections (local, collector and arterial respectively) were calibrated for thin thickness, weak 
subgrade and high traffic. The best fitness achieved for each section was (92%, 90%, 74%) 
respectively. Categories where no section found were designated with NA results. Table 3 
shows the details for each section optimum solution along with the measured IRI and the 
calculated IRI resulted from the GA.  As can be seen from table 2 and table 3, most of the 
sections showed good chromosomes fitness above 90% with slight difference between 
predicted and measured roughness which suggest that GA is a promising tool that can be used 
to locally calibrate MEPDG distress coefficients. Few sections showed low fitness below 90%, 
however, this fitness can be improved by changing the mutation rate (and or crossover 
positioning) to produce fitter solution to the problem. 
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Table 2: Fitness Results for MEPDG Roughness Calibration 

Thickness Subgrade 
Traffic 

Low Medium High 

Thin 
Weak NA, 96, NA NA, NA, 93 92, 90, 74 
Strong 54, NA, 94 NA, 97, 96 95, NA, NA 

Medium 
Weak NA, 94, 95 NA, 93, 74 NA, 83, 89 
Strong 89, 85, 84 91, 92, 82 92, 93, 84 

Thick 
Weak 93, 95, 95 95, 92, 93 93, 87, 59 
Strong 78, 81, 97 93, NA, 90 97, 90, 92 

 
 
 
 
CONCLUSIONS 

The current study showed that genetic algorithm (GA) can be employed to locally calibrate 
mechanistic empirical design guide. As a part of this study, MEPDG engine was developed to 
receive roughness calibration coefficients, execute analysis and calculate roughness output. 
The GA framework mechanism generates initial coefficients seeds and receives output from 
MEPDG engine to calculate chromosome fitness in each cycle in an iterative process that is 
guided by GA routine. A design of experiment (DOE) was implemented to identify the factors 
that are highly impacting the roughness performance. The DOE resulted in 18 site specific 
conditions. The objective was to elect three sites in each category condition from different sites 
in Ontario that represents local, collector and arterial function classes respectively. Accordingly, 
42 sections were available for calibration in this study. The calculated fitness for most of the 
sections in the DOE indicated that the genetic algorithm is a promising tool that can be used in 
the calibration of MEPDG and these resulted models are perfectly calibrated to represent the 
current condition in most of the cases. The optimization-based technique will definitely provide 
near optimum local calibration coefficients and help pavement industry and transportation 
agencies to accurately calibrate MEPDG compared to traditional “trial and error” based 
technique. These coefficients can be enhanced by increasing the number of individuals in each 
population or use more samples in each condition to improve the calibration results. 
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Table 3: Calibration Results for each Selected Section in the DOE 

 Thickness Subgrade Traffic C1 C2 C3 C4 Fitness 
Measured IRI GA IRI 

 
1 2 1 2 

Local 

Thin Strong Low 42 0.8 0.003 0.018 54.2 170.5   92.5   
Thin Strong High 43 0.6 0.004 0.017 94.9 95.1   90.2   
Thin Weak High 38 0.6 0.006 0.016 92.2 110.9   102.2   

Medium Strong Low 49 0.4 0.008 0.019 89.0 101.1 114.3 94.1 97.1 
Medium Strong Medium 47 0.7 0.005 0.019 91.4 141.8 165.3 138.1 141.3 
Medium Strong High 44 0.3 0.001 0.017 92.3 92.2 107.5 90.1 93.4 

Thick Strong Low 50 0.8 0.005 0.017 77.8 114.3   88.9   
Thick Strong Medium 33 0.5 0.001 0.014 93.4 125.4   134.2   
Thick Strong High 47 0.5 0.003 0.016 97.0 69.9 79.1 71.4 75.9 
Thick Weak Low 50 0.1 0.007 0.019 93.2 146.2   136.2   
Thick Weak Medium 36 0.2 0.008 0.011 94.7 117.9   124.5   
Thick Weak High 31 0.1 0.008 0.016 92.8 54.7 67.8 63.7 68.1 

C
ollector 

Thin Strong Medium 43 0.3 0.001 0.014 97.1 63.8   61.9   
Thin Weak Low 39 0.4 0.002 0.015 96.3 117.9   122.4   
Thin Weak High 43 0.3 0.001 0.015 90.2 146.2   131.9   

Medium Strong Low 46 0.7 0.005 0.019 84.6 170.5 231.9 164.4 168.6 
Medium Strong Medium 38 0.3 0.001 0.015 92.0 165.3 175.8 155.1 158.6 
Medium Strong High 50 0.4 0.003 0.015 92.9 110.9 137.5 129.2 137.4 
Medium Weak Low 42 0.4 0.006 0.018 94.3 110.9 133.3 121.8 130.1 
Medium Weak Medium 40 0.9 0.002 0.015 92.7 101.1 121.6 116.6 123.3 
Medium Weak High 46 0.8 0.005 0.012 82.6 65.7 79.1 83.8 91.0 

Thick Strong Low 46 0.2 0.005 0.017 81.0 98.0 110.9 82.8 86.0 
Thick Strong High 30 0.6 0.004 0.012 90.5 117.9 129.3 133.6 139.5 
Thick Weak Low 37 0.4 0.001 0.018 94.6 110.9 129.3 111.3 115.8 
Thick Weak Medium 44 0.2 0.009 0.017 91.9 192.8 198.8 177.1 182.7 
Thick Weak High 44 0.6 0.004 0.018 87.2 81.5 117.9 103.3 112.5 

A
rterial 

Thin Strong Low 38 0.8 0.001 0.011 93.7 150.8   160.6   
Thin Strong Medium 48 0.1 0.008 0.013 96.2 137.5   143.0   
Thin Weak Medium 49 0.4 0.006 0.019 92.8 155.5 165.3 143.1 154.7 
Thin Weak High 38 0.4 0.007 0.011 73.5 72.1 98.0 104.4 125.6 

Medium Strong Low 45 0.5 0.007 0.019 83.9 95.1 98.0 79.2 82.8 
Medium Strong Medium 46 0.8 0.002 0.018 81.5 155.5 165.3 127.8 133.7 
Medium Strong High 44 0.6 0.007 0.018 83.9 117.9 117.9 98.9   
Medium Weak Low 46 0.3 0.001 0.018 94.7 110.9 117.9 103.2 113.6 
Medium Weak Medium 46 0.3 0.009 0.017 74.4 146.2 192.8 119.0 130.0 
Medium Weak High 45 0.4 0.002 0.018 89.3 137.5 165.3 128.9 140.2 

Thick Strong Low 40 0.4 0.002 0.016 96.6 133.3 146.2 136.2 139.3 
Thick Strong Medium 41 0.4 0.006 0.018 90.0 146.2 155.5 133.7 137.7 
Thick Strong High 36 0.3 0.001 0.018 91.9 121.6 150.8 123.2 128.2 
Thick Weak Low 35 0.3 0.001 0.017 95.0 110.9 133.3 115.6 125.4 
Thick Weak Medium 32 0.5 0.007 0.011 93.4 76.7 86.7 84.4 90.5 
Thick Weak High 49 0.4 0.006 0.018 58.8 150.8   88.6   
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