REALIZED AND ANCITIPATED BENEFITS

The Low Level Road (LLR) project involves the realignment and widening of approximately 2.5 km of urban and rural arterial road within the City of North Vancouver boundaries. The project incorporates improvements to road safety, community connections, and increase on a Port trading capacity with the construction of over 7 km of pedestrian and cyclist facilities, a tiered retaining wall system, a vehicle overpass, and three pedestrian bridges.

As the Prime Design Consultant for Port Metro Vancouver, Stantec provided design management and engineering services for civil/roads, rail, structural, utilities/drainage, geotechnical, electrical, landscaping, and traffic engineering; as well as construction support. The design was done in accordance with the Transportation Association of Canada's (TAC) Geometric Design Guide for Canadian Roads, including the BC MOTI Supplement to TAC. The key road safety objectives for the LLR project are to:

- Eliminate rail/road conflicts and associated safety risks at three existing at-grade crossings along the LLR corridor (i.e. at St. Andrew's Ave, south of St. Patrick's Ave, and at the access to Neptune/Cargill port terminals),
- Minimize interaction between motorists and railway operations along the LLR corridor,
- Address existing roadside hazards related to the proximity of vehicles, cyclists and pedestrians to barrier ends, utility poles, and unstable slopes,
- Improve the cross-sectional design of LLR, including wider shoulders and setback distances,
- Improve pedestrian and cyclist facilities on and adjacent to the corridor, including improvements to the North Shore Spirit Trail, a recreational green pathway,
- Enhance operations at the Neptune/Cargill port terminals with improved access, geometry, and laning.

Please refer to the appendices for supporting project photographs, project poster, plan and profile drawing, and signing and pavement marking drawings for the Low Level Road project.

Esplanade Avenue and St. George's Avenue Intersection

The previous intersection has insufficient cyclist lane width (1 m instead of the required 1.5 m minimum), very sharp vehicle turning movements, and insufficient length for acceleration and deceleration lanes. The $4 m$-wide Spirit Trail multi-use pathway ended abruptly at St. Georges Avenue without pedestrian connectivity to other facilities along the Low Level Road.

The new intersection provides, generous turning movement for WB 20 design vehicles, protected Left turn lanes, adequate width for cyclist lanes (2.0 m), connectivity for all modes of transportation (cyclist, vehicular, pedestrian, rail).

Esplanade Avenue and St. Andrew's Avenue Intersection

The previous intersection was un-signalized and had nonexistent pedestrian sidewalks and crossing facilities. St. Andrews Avenue is a major cycling route in the City of North Vancouver; however no adequate or safe cyclist connection was available between St. Andrews Avenue and LLR's Westbound and Eastbound lanes. There was constant conflict between vehicles
chaotically parked on the North side of Low Level Road/Esplanade Avenue and traffic on LLR's Westbound and Eastbound lanes. Vehicles were entering and exiting adjacent businesses without proper signalization and traffic management. An un-signalized at-grade rail crossing, lacking signs, was also present at the South side of the intersection, causing unsafe crossing conditions.

The new intersection features design opportunities for vehicular, cyclist and pedestrian usage in a unique intersection layout. As a result, it was important to perform a thorough review of any potential areas of conflict or user misinterpretation. Following the review, it was determined that the new design is a feasible option which provides adequate safety precautions and ensures smoothly flowing traffic in all directions. The channelization design at this intersection was clearly demarcated with dotted pavement markings in order to guide vehicles along the lane and signs have been posted to provide additional visual cues for the user.

The pedestrian crossing at Esplanade and St Andrew's Avenue has also been evaluated to provide optimal efficiency and user safety by improving visibility. Left turning traffic from St. Andrew's Avenue to Low Level Road share a conflict point with the pedestrians accessing the Spirit Trail crossing at LLR. The left turning traffic is provided with adequate sightlines and visual cues such as delineation with elephants' foot and other pavement markings. Unlike standard four-leg intersections, there will be no opposing (ie. northbound) through traffic on St. Andrew's Avenue and therefore the southbound left-turning traffic will not be distracted from pedestrian activity by having to locate a gap in opposing traffic prior to turning left. This configuration encourages steady traffic flow by minimizing traffic build-up and prevents unwanted maneuvers onto adjacent roads.

The merging operations for Westbound Esplanade west of St Andrews Avenue is subject to safety considerations associated with skewed lanes including: difficult sightlines, visibility concerns and awkward signing and configurations. The risk of rear-end collisions may be increased caused by following vehicles not being aware of the movement of leading vehicles attempting to merge. The leading vehicle may also have a limited ability to search for available gaps in traffic and maintain awareness of cyclists in the vicinity. To address these safety considerations, traffic control and signs have been provided to assist with the merging operations. Brightly colored green pavement markings and bicycle stencil road markings have been provided to clearly demarcate the bike lane to improve visibility of cyclist activity within the area of conflict.

Low Level Road Corridor

The Low Level Road laneway and cyclist lane were previously directly adjacent to the rail yard and within the dynamic envelope of moving trains, causing conditions for potentially unsafe traffic interactions. To address this, a multi-tiered retaining wall system was implemented along the corridor to grade-separate North Shore residences at the top level, pedestrian and cyclist movement through the Spirit Trail, vehicle movement through LLR, and railroad traffic through a CN yard at the lowest level. By placing each mode at different elevations, traffic interactions can be minimized and the potential for collisions significantly decreased.

Prior to these improvements, the North slope of the existing corridor (from St. Patrick's Ave to Heywood Street) showed significant slope stability issues and failures that raised safety concerns from adjacent residences and traffic participants. Today, $30,000 \mathrm{~m}^{2}$ of retaining walls provide a permanent solution to mitigate long-standing slope stability and landslide issues in the community. The walls utilize industry-leading geogrid technology to reinforce mechanically stabilized earth to cost-effectively, sustainably, and economically minimize the use of limited waterfront space while stabilizing the area. Designated or widened bike lanes, barrier mounted cyclist fences, and multiple safe refuges for cyclists were also implemented along the corridor to enhance cyclist safety.

Spirit Trail Pathway

Both pedestrians and recreational and commuter cyclists may also choose to use the newly widened and landscaped Spirit Trail recreational pathway, which now includes safety elements such as additional lighting, wayfinding signs, adequate cyclist barriers, and cyclist pavement markings. Before these improvements, the trail had a poor drainage system, very low sightlines, no illumination at night, unstable slopes and dense vegetation which raised considerable safety concerns during the Crime Prevention Through Environmental Design (CEPTED) review process. The new design features timber stairs that have been constructed to traverse steep slopes and provide connections to two new woodland bridges, which provide safe crossings across embankments and natural creeks in an environmentally sensitive habitat.

The Spirit Trail Overpass, a new steel tied arch pedestrian bridge, ties into the trail at the East end of the project and provides a grade-separated crossing for pedestrians and cyclists to safely cross above the busy LLR and East 3rd Street intersection. This reduces cyclist and foot traffic on the roadway, improving safety and traffic flow through the area.

Neptune/Cargill Intersection (Overpass)

The project effectively addresses the safety concerns at this access road by replacing an atgrade intersection with a grade-separated overpass crossing. The previous intersection layout could not accommodate crossing pedestrian and cyclist traffic and was often blocked by frequent heavy rail traffic passing through the intersection. Significant queues and heavy traffic congestion was observed during peak hours. As this intersection served as the main access to the Neptune/Cargill and Richardson terminals, a significant amount of vehicles were observed to unsafely cross the rail tracks on a red signal. A high number of accidents have been observed by Neptune and Cargill, who are the current tenants of the adjacent port lands. Additionally, there was poor visibility due to traffic signal devices including power cabinets and rail signals being placed within the sight triangle on both Southeast and Southwest corners of the intersection.

The new high standard intersection will span the entire width of the rail yard and provide access to port terminals and properties south of the Low Level Road. The new overpass is expected to significantly reduce the amount of collisions in the area due the grade separation. A designated sidewalk at the West side of the overpass now safely accommodates pedestrian
traffic. The concrete bridge pier located within the rail yard envelope was designed with protective measures in the case of train derailment per AREMA requirements.

Rail Improvements

The key objective of rail improvements along LLR is to provide for the future construction of two additional rail tracks parallel to existing facilities to accommodate port growth. Existing tracks were relocated and aligned to reduce train whistling and switching, thus enhancing rail safety. With the elimination of three at-grade rail crossings throughout the project, traffic delays can be reduced, emergency response capabilities increased, and vehicle idling and greenhouse gas emissions decreased in a sustainable manner.

Low Level Road and East 3rd Street Intersection

The alignment of the Low level Road intersecting with East 3rd Street is an unconventional, skewed intersection where motorists are required to merge onto a single lane travelling eastbound. To address safety concerns associated with the required traffic layout, clear delineation of the traffic lanes is provided through guidance lines. Eastbound cyclist movements through the intersection have also been considered. Routing improvements such as shorter crossing distances and push-button traffic control features reduce vehicle-cyclist conflicts and allow for safer crossings.

Kennard Avenue Intersection

The previous intersection, located at the East end of the project, offered poor cyclist facilities and pedestrian connectivity in the area and did not have sufficient lanes to accommodate future traffic growth estimated with the City's limits. Due to the lack of raised medians and traffic islands, illegal/unsafe movements were often observed through the entire intersection

The new Kennard intersection was designed to decrease the crossing distance through the intersection. Safety benefits associated with the design concept include:

- Reduced zone of conflict at intersections - The south side of the Low Level Road is shifted northward with the added benefit of reducing the effective intersection area and allow for shorter crossing distances. Both travelling lanes have a reduction of up to 13 meters.
- Gentle S-curve alignment along Low Level Road - The S-curve serves as an effective eastbound transition from the high standard, access controlled Low Level Road facility to the more urbanized roadway environment, located east of Kennard Avenue. The curve encourages lower vehicle operating speeds and reduces the safety risk associated with cyclists crossing 3rd Street East. Potential vehicle-cyclist incidents are expected to be reduced in frequency and severity overall. It is anticipated that traction and control will not be a concern for vehicles driven at reasonable operating speeds while executing this turn.
- Increased weaving distance for Gladstone Avenue traffic - The northward shift of the south side of Low Level Road and the reduction in the size of the intersection will also increase the weaving distance for eastbound Low Level Road traffic turning left at Gladstone Avenue. A total of approximately 30 meters of additional weaving distance is provided as eastbound Low Level Road traffic and eastbound 3rd Street East merge together further to the west.

How the potential safety benefits were estimated using information from reliable sources?

Traffic analysis using Synchro 8 software and VISSIM modelling was conducted during the design phase to study the impact of proposed geometric improvements along the LLR corridor. AM and PM peak hour movements were studied at all proposed intersections. Forecasted 2031 horizon traffic volumes from reliable sources including EMME model and available traffic engineering studies were referenced and used in combination with factored existing volumes to analyze worse possible projected traffic volumes. Network traffic signal cycle lengths and offsets for coordinated signals were calculated for design input with the aim of optimizing traffic flow and safety. Based on analysis results, intersection queuing is expected to drop significantly and adequate Levels of Service will be met throughout the project. Improvements to the road alignment, layouts, traffic operations, as well as the installation of additional safety design elements (such as signage and lighting) resulted from the study.
Using VISSIM simulation package all the existing and proposed at grade rail crossing were analyzed to conform a safe coordination between rail and vehicular traffic. The same model was also used to create safe and effective construction staging plans, detours and traffic accommodation.

How is the project evaluated in terms of safety?

In order to evaluate the safety performance of the project, road safety audits were conducted at three critical stages: at 50% detailed design, 100% detailed design, and post-construction (i.e. pre-opening). The objectives of each audit stage were considered within the context of all road users, including pedestrians and cyclists, and are described below:

1. 50% detailed design stage - Identify modifications to design details that could reduce the potential and severity for future collisions, and focus on the safety performance of the following design elements: horizontal and vertical alignment, cross-sectional design elements, intersection layouts, traffic operation, access, interaction between travel modes.
2. 100% detailed design stage - Review design changes and focus on the safety performance of the following design elements: signing, delineation and pavement markings, roadway and roadside hazard protection, use and placement of barriers, lighting, landscaping features, and street furniture that may inhibit sightlines or create other safety issues, traffic signal placement and operation.
3. Post-construction stage - Conduct field investigations to determine the expected safety performance of constructed facilities, and aim to, identify any safety issues before facilities are fully opened to the road/facility users, evaluate the safety of road features that were not apparent or indicated on the detailed design drawings, determine if the needs of all potential road users have been adequately and safety met.
Our project partner, the City of North Vancouver, has also retained additional road safety auditors to conduct quality control and audit processes throughout the duration of the project to ensure safety requirements are met.

DEGREE OF INNOVATION

The local experience and expertise of the design team with projects of this scale and complexity has been critical to developing cost effective solutions to the various constraints and challenges facing the design and construction of the LLR project. 95% of all the components used on the corridor are local and recyclable materials.

Roadway Design

The road alignment elevation was designed to maintain the green buffer zone between the road and adjacent neighborhoods in order to minimize community impact from the new road and to address one of the main community concerns regarding visual impacts to existing views of the North Shore area. View assessments were completed to minimize visual impacts for the current neighbors along Low Level Road. Connections to local pedestrian and cyclist paths were carefully planned to improve road safety and provide connectivity to the existing trail.

Bridge Design

Five different primary structures were designed and built for the LLR project. A contextsensitive suspension bridge, the Spirit Trail Woodland Suspension Bridge, utilizes an efficient and lightweight superstructure to provide a context sensitive solution that blends in to the surrounding vegetated environment and creates a rustic experience for pedestrians, while retaining the sensitive eagle's nest habitat located high above the east abutment. A careful construction sequence was planned in order to mitigate disturbance to the eagle's nests found on the trees. After the bridge erection, eaglets were seen at the top of the undisturbed trees and multiple sightings of adult eagles have been reported in the vicinity of the new bridge.

Geotechnical Design

Situated along a steep slope, the road required support by retaining walls up to 14 meters high. Innovation in the selection of different retaining wall systems depending on the site geotechnical requirements for slope stability and landscaping was achieved. A value engineering analysis including evaluation of different wall options was completed in order to find the most economical retaining wall option. As a result, construction costs were reduced by $\$ 15 \mathrm{M}$ by revising from a cut type wall to a fill type wall.

Electrical Design

For energy efficiency, LED lighting was utilized for all of the street lighting on the project. This allowed to minimized service requirements without sacrificing lighting quality.

Environmental

Numerous Environmental Impact Assessments were conducted by Port Metro Vancouver to identify sensitive areas along the corridor.
As part of the Environmental Assessment for the Low Level Road project, a noise impact assessment was conducted. The material and shape of noise walls to go on top of retaining walls were used for noise control to meet the needs of the surrounding residents, including specialty acrylic noise wall panels fabricated in Austria which retained the beautiful view of Burrard Inlet.

Community

The project design plan was refined through a public consultation process involving residents, business and staff at the City of North Vancouver to develop a design that takes into consideration local residents and fulfills the community's best interests. Road elevation, view impacts, noise walls, aesthetics, landscaping, and integration with community development were addressed.
During public consultations, a preference for public art themes including First Nations (Coast Salish), the history of Moodyville and the working Port was indicated; all of which have been successfully incorporated in to the project with custom-made precast concrete art panels at two key locations along the project corridor, as well as an art exhibit positioned near the business parking area at the west end of the project.

Economic

While achieving engineering excellence, LLR was designed to provide significant economic benefits to the surrounding community. The Low Level Road improvements will increase rail and port capacity through the addition of mainline rail tracks. The project will enhance safety and permit more efficient rail operations to accommodate anticipated trade, rail and traffic growth and terminal expansion projects planned for the North Shore.
In addition, the Low Level Road project will also improve the local life quality and environmental benefits. Some of these benefits will include a reduced congestion on Low Level Road, increased employment on the North Shore and throughout the Lower Mainland, reduced noise pollution, improved connectivity throughout the Spirit Trial multi-use pathway, and expanded terminal facilities that will increase tax revenues.

TRANSFERABILITY TO OTHER CANADIAN COMMUNITIES AND ORGANIZATIONS

The proposed design of the intersection at Low Level Road and Kennard Avenue was developed to operate as a "Half Diamond" intersection with free flow of traffic on Low Level Road WBL and East $3^{\text {rd }}$ EBL

Safety Benefits

Fewer conflict points, conflict point are clearly identifiable, and preventable as the sight lines at the intersection are very long,(almost opposing lines), virtually no driver confusion as all the traffic movement are delineated by raised medians, traffic calming features when desired, pedestrian crossings are shorter, (however on this project, all the pedestrian movements are grade separated), better storage between exits, cyclist crossings are developed through the raised medians away from high speed vehicular traffic.
Based on the information collected at a similar intersection in France, the number of collisions can be reduced by aprox. 60\%.

Low Level Road Project, is currently under ENVISION certification review, and is scheduled to become the first Gold Certified infrastructure project in Canada.

West end, before: The Low Level Road and cyclist lane was previously adjacent to the rail tracks, causing unsafe traffic conditions and noise pollution

West end, after: New rail tracks, grade-separated from the laneway, increase port operational capacity while addressing safety issues and traffic challenges along the heavily-used Low Level Road Corridor

Low Level Road Corridor, before: The laneway and cyclist lane were previously directly adjacent to the rail yard and within the dynamic envelope of moving trains, causing unsafe conditions.

Low Level Road Corridor, after: A multi-tiered retaining wall system was implemented along the corridor to grade-separate motorists, pedestrians, cyclists, and rail traffic away from one another.

Low Level Road Corridor and Railway, before: Narrow rail envelopes were previously directly adjacent to the rail yard and could not accommodate growing rail capacity demands.

Low Level Road Corridor and Railway, after: Rail improvements along the corridor provide for the future construction of two additional rail tracks parallel to existing tracks to accommodate port growth.

Existing tracks were relocated and aligned to reduce train switching, thus enhancing rail safety.

Port access, before: The Neptune and Cargill port terminals were previously accessed by an at-grade rail crossing, causing unsafe and congested traffic conditions

Port access, after: The Neptune/Cargill Overpass replaces the at-grade rail crossing with a unique
bicycle and pedestrian-friendly flared deck bridge

East end, before: The previous intersection configuration could not accommodate crossing pedestrian and cyclist traffic and was often blocked by frequent rail traffic, causing traffic conflicts and congestion. A high number of accidents have been observed.

East end, after: Retaining walls form a cost-effective, multi-tiered transportation system to gradeseparate residences, East 3rd Ave, the recreational Spirit Trail pathway, Low Level Road, and CN rail tracks. The Neptune/Cargill Overpass connects Low Level Road to port terminals, and the Spirit Trail

Overpass connects the Spirit Trail to the North Shore community for pedestrians and cyclists.

Esplanade Avenue and St. Georges Avenue Intersection, before: The intersection had insufficient cyclist lane width, very sharp vehicle turning movements, unsafe pedestrian connectivity, and short acceleration lanes on the East side. Refer to attached drawing 23-351-00-RD-701 for the "after" design.

Esplanade Avenue and St. Andrews Avenue Intersection, before: The intersection was
unsignalized, had nonexistent pedestrian facilities and poor cyclist connectivity, had poor sightlines and
featured an unsafe at-grade crossing on the South side. Illegal movements were often observed. Refer to attached drawing 23-351-00-RD-701 for the "after" design.

Low Level Road and St. Patricks Avenue Intersection, before: The previous intersection featured an at-grade rail crossing (over 3 rail tracks) with nonexistent rail crossing lines, signals, and traffic control devices. Sightlines were poor as LLR rises to the West, and cyclist lanes were too narrow. Refer to attached drawing 23-351-00-RD-702 for the "after" design.

New Spirit Trail Suspension Bridge: The suspension bridge traverses steep slopes and is designed to enhance the Spirit Trail's rustic appeal, reduce environmental impacts as a single-span structure, and protect the existing eagle habitat within the surrounding Moodyville Park.

Low Level Road and East $3^{\text {rd }}$ Street Intersection, before: The alignment required motorists to merge onto a single lane traveling Eastbound. Pedestrian/cyclist movement was not safely accommodated. Kennard Avenue Intersection, before: The intersection offered poor cyclist facilities and pedestrian connectivity in the area and did not have sufficient lanes to accommodate future traffic growth. The lack of raised medians and traffic islands promoted illegal movements throughout the entire layout.

Kennard Avenue Intersection, after: The signalized Kennard intersection efficiently separates traffic along Low Level Road and East 3rd Ave, has fewer merge lanes, and safely accommodates public transit, pedestrians, and bicycle traffic.

©
 Low Level Road Projec \dagger

North Vancouver, BC / Transportation

 broader investment into the North Shore Trade Area. The project is comprised of 2.2 km of roadway improvements and seven atgrade separated intersection, 5 km of pedestrian and cyclist facilities, slope improvements, and 4 km of new rail corridors. The primary objective is to increase port operations capacity while addressing safety and traffic challenges along the heavily used east-west corridor. In partnership with the City of North Vancouver and Translink, community involvement and consultation was a crucial components of the project throughout its design and construction phase.Building infrastructure in a sustainable manner Low Level Road is currently targeting Envision ${ }^{\text {TM }}$ Gold status

The project addresses several key challenges:

- Geotechnical - unstable, unprotected slopes, adjacent to residential area, poor drainage
- Traffic safety - intersection safety; congestion; vehicular/cyclist pathways adjacent to unprotected rail lines; inadequate lighting
- Pedestrian safety - multiple points of conflict at intersections and pathways
- Local community - pedestrian/cycle pathway connectivity; train related noise, air quality, and disruptions
- Environmental - direct impact on sensitive ecological areas
- Economic - accommodation required for Port Metro Vancouver future growth
- Construction staging - maintain all existing roads opened during construction

Project Owner:
Funding Partners

Port Metro Vancouver
Port Metro Vancouver; City of North Vancouver; TransLink; Transport Canada; CN Rail: CP Rai

Stantec $\begin{gathered}\text { north shore trade area } \\ \text { Low level road project }\end{gathered}$

