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Modeling Household Weekend Activity Durations in Calgary  

 

By Ming Zhong and John Douglas Hunt 

 

Abstract 

A large-scale survey for household weekend activity and related travel was completed recently in 
the City of Calgary. The data include detailed information of traveler and activity, such as 
personal type (e.g., adult worker or senior), employment status (fulltime or part-time), annual 
income, gender, activity type (e.g., shopping or sociality), activity duration, and starting & 
ending time of each activity. A micro-simulation based choice behavior model has been used in 
the previous city planning tasks. The model is capable of simulating complete travel behavior of 
individuals by considering travel purpose, travel mode, itinerary, activity durations, and even 
group influences. Previously, the simulation was done using a Monte Carlo process with 
sampling distributions based on weighted sample of observed durations. Simulations based on 
such “static” distributions, however, can not be used to analyze the influences of various policies 
(e.g., changes in transit fare) and travel conditions (congestion or easier accessibility) to 
household activities in a dynamic environment. This study is an initiative for modeling the 
relationship between activity durations and various influencing factors (e.g., personal type, 
employment status, and income level, etc.). Especially, hazard and survival functions are 
specified for each type of activity and individual personal type. The results show high degree of 
fit. It is believed that these models would be useful for travel-related policy analysis in the future 
modeling framework. (Total 222 words) 
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Introduction 

Travel demand modeling has been intensively focused on forecasting individual activities and 
related travel patterns on weekdays to damp traffic congestions occurring mostly at morning or 
evening peak commuting hours. Literature review indicates that many studies have been carried 
out for investigating weekday travels, but less effort has been placed on weekends until recently 
[1-4]. However, as travel demand keeps increasing and infrastructure construction is getting 
constrained, congestions take place in many big cities over weekends. A previous study [5] 
shows that weekend household travels are comparable to those of weekdays, in terms of the 
number of trips made and trip lengths. It is clear that people have distinct travel behaviors on 
weekends because most do not have commitment to work and thus be able to participate in 
various other activities (e.g., maintenance shopping, sociality, and entertainment etc.). Hence, 
based on these reasons, it seems that special attention should be given to weekend travel as well. 

A large scale of survey for weekend household activities was completed recently in the 
City of Calgary, Canada. The purpose of the survey is to collect enough data for both short-term 
operational analysis and long-term planning. The data obtained from the survey provides 
excellent opportunities to analyze weekend activity and related travel behaviors, and is expected 
to provide insights for future policy makings. 

In this study, a general picture of weekend household activities in the City of Calgary is 
first presented. Then, a variety of hazard/duration models are analyzed and specified for various 
activities and demographic groups. The analyzed activities include travel related activity (e.g., 
dropping off or picking up a person), working, schooling, shopping, sociality, eating, 
entertainment, exercise, religious activities, and out-of-town travel. Demographic groups are 
studied for each type of activity, including AO (Adult non-worker), AWNC (Adult worker who 
needs car), AWNNC (Adult worker who doesn’t need car), KEJS (Elementary or junior high 
school students), PSS (Post-secondary students), Sen (Seniors), SHS (Senior high school 
students), and YO (Young other). The analyses are applied to individual activity types and 
demographic groups to account for the heterogeneity in the data. For each activity and 
demographic group, hazard/duration models based on different distributions (e.g., lognormal or 
Weibull) are explored and best-fit models are specified.  

The rest of this paper is organized as follows. First, a literature review for duration/hazard 
models is presented, then the study data are presented, followed by study models and results, and 
finally major findings and conclusions are given at the end of this paper.  

Review of Duration/Hazard Models 

The statistical analysis of what are called as lifetime, survival time, or failure time data has long 
been an important topic in many areas, such as biomedical, engineering, and social sciences [6]. 
It is known as duration modeling or hazard modeling. For example, Bartholomew [7] used 
duration models to study the lifetime distribution of equipment. Prentice [8] compared the effects 
of two chemotherapy treatments in prolonging survival time of 40 advanced lung cancer patients. 
Nevertheless, duration models have been more and more widespread used in transportation area 
[9-16].  
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The key element of duration modeling is hazard functions, which indicate the way that 
the risk or probability of failure varies with age or time [6]. A hazard function h(t) that expresses 
the probability of the occurrence of an event during a certain time interval, say t to t + ∆t, given 
that the event has not occurred before the beginning of the interval. The conditional probability 
of duration starting or ending plays an important role as the probability indicates that an event 
starts or terminates depends on the length of time or the duration has lasted.  

Let T be a nonnegative random variable representing the lifetime of individuals in some 
population. Here only a continuous variable T is assumed (discrete T can be accommodated by 
considering the discretization as a result of segmentation of continuous time into several discrete 
intervals), as this is the case for most applications. Let the probability density function of T is f(t) 
and the cumulative distribution function (CDF) is F(t). Then we have: 

)()( tTPtF <=         [1] 

Where T is a random time variable and t is some specific time. In the case of household 
activities, the cumulative distribution function is defined to indicate the probability of an activity 
would end before some specified time, t.  Then the probability density function (PDF) of f(t) can 
be obtained: 

dt
tdFtf )()( =          [2] 

Which provides unconditional distribution of duration T. The survival function (SF), S(t), 
is then can be defined as:  

)(1)()( tFtTPtS −=≥=        [3] 

The above survival function represents the probability that the duration in a state T will 
be greater than or equal to some specific time t. The hazard function can then be expressed as a 
function of the probability density function f(t), the cumulative distribution function F(t) and 
survival function S(t), as shown in the following equation: 
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The hazard, h(t), gives the rate at which events (e.g., ending an activity) are occurring at 
time t, given that the event has not occurred up to time t.  

Parametric hazard functions 

Various parametric families of models are used in the analysis of lifetime data. Among 
univariate models, a few distributions demonstrate their usefulness and have been applied in a 
wide range of situations [6]. These distributions are Exponential, Weibull, Log-logistic, Log-
normal, extreme value (Gumbel) and Gamma. The four most common distributions are 
summarized below: 
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(1) Exponential: 

The exponential distribution has the following PDF and SF: 
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So the exponential distribution is characterized by a constant hazard function. Because 
the assumption of a constant hazard function is very restrictive, the model’s applicability is quite 
limited in reality. 

(2) Weibull: 

The Weibull distribution may be the most widely used duration models. It has a PDF and SF as 
follows: 
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Where λ and β are positive rate and scale parameters. Note that the hazard function is monotone 
increasing if β >1, decreasing if β < 1, and constant if β = 1. The model is fairly flexible and has 
simple expressions for the PDF, SF and hazard functions lead to its popularity.  

(3) Log-Normal: 

The log-normal distribution has been used as a model in diverse applications in engineering, 
medicine and other areas. The lifetime T is said to be log-normally distributed if Y = log T is 
normally distributed, say with mean µ, variance σ2, and PDF [6]: 
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The survivor and hazard functions for the log-normal distribution involve the standard normal 
distribution function:  
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Then the log-normal survival function can be written as: 
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The hazard function is then obtained:  
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(4) Log-Logistic: 

The log-logistic distribution has PDF of the form: 
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When β  > 1, the hazard first increases and then decreases. When 0< β  ≤1, the hazard decreases 
with duration. 

 In addition to these four popular models, extreme value distribution is used in some cases 
where lifetime variable T follows a Weibull distribution, but we want to analyze Y = log T. In 
this case, Y follows an extreme value distribution. Gamma distribution is not used as a lifetime 
model as much as the four models mentioned above, due to the complexity of its hazard function. 
However, it does fit a variety of data. It also arises in some situations involving sum of a series 
of independent and identically distributed exponential random variables [6]. In such a case, 
however, the most challenging issue is to address that considered exponential random variables 
do have a same distribution parameter λ.  

Nonparametric hazard functions 

The above hazard functions are fully parametric and could be applied to questions with sound 
theoretical foundation. However, in some cases, if little or no knowledge of the functional form 
of the hazard is available, one might use a non-parametric approach in which there is no 
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assumption involved concerning the underlying distribution of the baseline hazard. However, 
analyst can not use any explanatory variable in the model if a nonparametric approach is chosen. 
The most popular nonparametric method is the Kaplan-Meier Estimator. For such an approach, 
the duration scale is split into small discrete periods and by assuming a constant hazard within 
each period, one can then estimate the continuous-time step function hazard shape. The Kaplan-
Meier Estimator is particularly good in situations in which there are a small number of groups 
and we want to know that if they share same survival distributions. There are several methods 
(such as Log-Rank and the Wilcoxon method) for such tests. Also, the nonparametric shape 
obtained from the Kaplan-Meier Estimator can be used to empirically test the assumed 
parametric baseline shapes [6]. 

Semi-parametric hazard functions 

When there is no clear choice concerning hazard functions, another safer approach is to use 
semi-parametric hazard models. In these models, there is no distributional assumption for the 
baseline hazard and leave it arbitrarily, but assumption is made concerning the functional form 
specifying how the external covariates interact with the baseline hazard in the model.  Two 
parametric forms are usually employed to accommodate the effect of external covariates on the 
hazard at any time: the proportional hazard form and the accelerated lifetime form [6, 9]. Here 
only proportional hazard form will be introduced due to its popularity.  

The proportional hazard form specifies the effect of external covariates to be 
multiplicative on an underlying hazard function [9]. The model defines the hazard rate at time t, 

)exp()(),( 0 xthxth β=        [9] 

where h0(t) is the baseline hazard rate assuming that all covariates in x have a value of 0, and β  
is a corresponding vector of coefficients to be estimated. In the proportional hazard model, the 
effect of external covariates is to shift the entire hazard function based on characteristics of 
individual; the basic hazard function is assumed same for all members of a group.  

The semi-parametric models partially relax the assumption of parametric relationship 
between various factors and resulting hazard rate. However, it should be noted that the 
multiplicative form of Equation [9] is a strong assumption and require careful checking in 
applications [6]. Moreover, it can be shown that if data censoring exists and the underlying 
survival distribution is known, the semi-parametric proportional hazard models do not produce 
efficient coefficient estimates [16]. 

Study Data and Primary Analyses 

Dataset from recently completed household weekend travel survey in Calgary was used in this 
study. The data include detailed information of traveler and activities, such as personal type (e.g., 
adult worker or senior), employment status (fulltime or part-time), annual income level (1-10 
levels), gender, age, household size (persons in household), driving capability (holding license or 
not), activity type, activity durations (in minutes), and starting & ending time of each activity. 
Totally there are 12,916 observations used in this study. By excluding those with missing 
durations, 12,882 observations are used in the following analysis.  
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The primary objective of this study is to examine and analyze the relationship, if any, 
between durations of various activities and people’s socio-demographic characteristics collected 
in the data. In order to have a preliminary understanding to the data, various box-plots are used 
to discover possible relationship between activity durations and individual socio-demographics. 
Figure 1 shows two of them. Figure 1(a) presents the distribution of activity durations based on 
activity and personal types. At first, it can be found that there are large differences between mean 
levels of different activity durations. For example, the travel related activities (drop-by etc.) are 
usually about 1-2 minutes, whereas working typically last for over 200 minutes. Secondly, for 
each activity type, significant variability exists among activity durations of different personal 
types (e.g., adult non-worker and senior). Based on these findings it seems that analyses at least 
should be applied to individual groups classified based on these two variables to well handle the 
heterogeneity in the data.  

Figure 1(b) shows the distribution of activity durations based on activity type and annual 
income level. It is expected that people with higher income would usually have different 
consumption patterns than those with lower income, for example, perhaps more social activity 
and longer entertainment/leisure durations. However, the plot does not show any obvious trend 
within individual activity types, as shown in Figure 1(b). It seems that income level does not 
significantly influence activity durations. Another finding from the above figures is that there are 
a large number of outliers existing in the data and activity durations tend to skew to the right in 
most cases. The finding is quite conform to those of many other studies, and indicates that 
models based on normal distribution may not be appropriate for the data, and the other types of 
models are needed to solve the problem at hand.  

Figure 2 shows percentage of different weekend activities. It is clear that the dominant 
weekend activity is shopping, which is about 35% of all weekend activities. The following 
important activities are eating, entertainment/leisure, and sociality. The percentage of these 
activities is 12.5%, 12.4%, and 11.4% respectively. About 10% of activities are related to the 
work and 8% are travel related activities. The remaining activities are usually about 5% or less of 
the total, as shown in Figure 2. The predominance of shopping and the other important weekend 
activities (e.g., eating) and related intensity in a short period in the weekend afternoons indicate 
that a high traffic demand is possible at a given time, and thus could present significant 
challenges to urban traffic management systems (UTMS). The above results indicate that distinct 
traffic operation and control strategy than those for weekdays may be required to avoid 
congestions.  Such strategy could be something like “giving priority to major corridor to 
shopping centers”.  

Study Models and Results 

The first question encountered in modeling activity durations would be which kind of models 
should be used? As mentioned in the previous section, there are three families of models 
available for duration modeling: full-parametric, nonparametric, and semi-parametric. In this 
study, nonparametric approach is not used in duration modeling because they don’t incorporate 
any parameters and can not be used in the policy analysis. However, it is used in this study to 
judge whether two groups could share a common survival function. Regarding full-parametric 
and semi-parametric, the question is to address that if a firm conclusion can be made to the 
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underlying data distribution and if a parametric model can provide a good fit. As mentioned 
before, if these two conditions can be met, parametric models are preferred because of not only 
their better predictions, but also their wider acceptance among practitioners.  

Based on the primary analyses from the previous section, it is clear that investigation 
should be applied to individual groups of different personal and activity type. First, investigation 
is applied to individual activity types, and best-fit parametric models are identified. Table 1 
shows the best-fit models for them. The following 11 distributions available in MINITAB are 
tested against different activities: Weibull, lognormal, exponential, loglogistic, 3-parameter 
Weibull, 3-parameter lognormal, 2-parameter exponential, 3-parameter loglogistic, smallest 
extreme value, normal, and logistic. These distributions are fitted into data and the fitness is 
evaluated with adjusted Anderson-Darling test statistics (AD values in the table) and correlation 
coefficients (COR in the table). The criterion is to select the distribution with the lowest AD 
value or the highest COR value. The best-fit models selected for the 10 activities are: lognormal 
or 3-parameter lognormal for travel related activity, working, schooling, shopping, eating, 
entertainment/leisure, and religious, civic etc. Weibull or 3-parameter Weibull are identified as 
the best-fit model for social and out-of-town activity. 3-parameter loglogistic is identified as the 
best for the exercise activity. The best-fit models identified above have the high COR values and 
indicate good fits, as shown in Table 1. The COR values for best-fit models are 0.99 or 1.00, 
except for travel related activity and out-of-town activity. The reason for inferior goodness-of-fit 
for travel related activity is that most people reported their durations in integer minutes rather 
than “real spell” (e.g., 1.2 minutes). This results in that data are not normally distributed, but 
cluster onto certain points (e.g., 1 or 2 minutes). The small number of observations lead to the 
deteriorated fit for out-of-town activity. Totally there are only 15 observations for such activities 
in the dataset. The obtained high goodness-of-fits emphasize that parametric, rather than semi-
parametric, models should be used.  

Figure 3 shows the empirical cumulative distribution function and fitted line based on 3-
parameter lognormal distribution for the shopping activities. The similitude between these two 
lines again emphasizes the high goodness-of-fit achieved.  

Because of the significance of shopping among all weekend activities, it is used as an 
example here to illustrate duration modeling of various activities in this study. Figure 4 shows 
the probability density function, probability plot, survival and hazard function for shopping 
activities based on 3-parameter lognormal distribution. The estimated parameters and calculated 
statistics are shown in the right of the figure. It can be seen from the probability plot in Figure 4 
that the selected model fits the data very well, except for the part of lower left corner. Again, the 
imputed nature of reported values results in such distortion. The hazard function shows that 
about half of shopping activities have a duration of less than 25 minutes. The hazard rate 
increases dramatically when the duration approaches 25 minutes. After that, the hazard rate 
continues decreasing, which indicates that there is another group of consumers who tend to shop 
for a longer time. Based on the estimated parameters, a set of duration models can be set up and 
hazard/survival rate at any time can be readily calculated.  

In order to investigate if different hazard/survival functions should be applied to 
subgroups based on personal types (e.g., AWNC subgroup), Kaplan-Meier method was used to 
check underlying distributions of the data. Figure 5 shows a nonparametric survival plot for 
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social activities. The figure and calculated test statistics (Log-Rank and Wilcoxon, as shown in 
the figure) all indicate that the demographic subgroups are significant different from each other 
and individual hazard function should be specified. Table 2 shows AD and COR values of 
different models when tested on individual subgroups. It can be seen from the table that the best-
fit models for the subgroups are quite consistent with that of the aggregate level when all 
subgroups are combined together. Out of 7 of 8 cases, 3-parameter Weibull distribution is 
identified as the best-fit models. There is only one exception that 3-parameter loglogistic 
distribution is identified as the best-fit model for YO group. Even in this case, the differences 
between these two distributions are quite small (the difference between AD values is 0.33 and 
that between COR values is only 0.01) and therefore, 3-parameter Weibull distribution still can 
be used to avoid complexity in the modeling process. Analyses also indicate that subgroups for 
the other activities (e.g., eating) share a common type of best-fit model (e.g., lognormal, but with 
different parameters) in most cases. Similarly, the hazard functions for activity durations of the 
other subgroup can be easily estimated based on the methods illustrated above. 

Concluding Remarks 

Studying household activities and corresponding travel patterns are important themes of activity-
based transportation planning. Previous research has been focused on weekday commuting travel, 
but little has been placed on weekend travel. This paper studies the weekend household activities 
in the context of the City of Calgary, Canada. The attempts made in this study include 
identifying important influencing factors to various activities and specifying best-fit 
hazard/duration models for individual subgroups based on personal and activity type. 

The analyses carried out in this study show that the following activities are dominant over 
weekends: shopping (35.2%), entertainment/leisure (12.4%), eating (12.5%), and sociality 
(11.4%). Among these, shopping is the most important activity and it is over one third of all 
weekend activities (Figure 2). The findings indicate that future research should pay more 
attention to these activities. Pattern analyses show that weekend activities mostly carry out in the 
afternoon. The findings indicate that there are different travel patterns on weekends and they 
deserve special attention. One of implications is that “specially designed” traffic operation and 
control strategy may have to be applied to accommodate such distinct traffic demand.  

The applicability of parametric, nonparametric, and semi-parametric models are 
examined in this study. Nonparametric models don’t incorporate any variable and therefore are 
not appropriate for policy analysis. However, they are useful for checking the underlying 
distributions and helpful for specifying appropriate parametric models. They are also used in this 
study to determine if subgroups could share a common survival function (Figure 5). The semi-
parametric approach was not considered in the study because the competing parametric models 
show high goodness-of-fit. Study results clearly suggest that different parametric models should 
be specified for different types of activity (Table 1). The most frequently selected models are 
lognormal, followed by Weibull and loglogistic. This study also shows that the models selected 
at aggregate level (e.g., by activity type) are highly consistent with those selected at disaggregate 
level (e.g., subgroups based on personal type) (Table 2).  
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The “rounding” of reported durations existing in the data result in deteriorated fit and 
prediction power of the developed models. It is expected that the developed models could be 
more accurate if “real” durations would have been reported in the data. Such a problem could be 
solved by “imputing” these rounded observations into a normally distributed population. Future 
research is going to explore such an issue.  

The hazard/duration models developed here are intended to be used in the future urban 
modeling framework. The aim is to replace previous “static” activity duration models. The 
models developed in this study explicitly consider many factors of household and individual 
members, but do not incorporate those by which various policy analyses can be made, such as 
transit fare and waiting time. Currently, this is limited by the data used. Future research should 
include these variables into the model when this information is available.   
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Figure 2 Percentage of different weekend activities 
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Figure 3 Empirical cumulative distribution function and fitted line for shopping activities 
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Figure 4 Distribution overview plot for weekend shopping activities 
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Figure 5 Nonparametric survival plots for social activities 
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Table 1 Best-fit models for individual activity type 
 

 Travel 
Related Work School Shopping Social Eating Ent/Leis Exercise Religious etc. Out of town

Distribution AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR

Weibull 127.45 0.81 12.25 0.98 1.53 0.98 29.16 0.98 2.51 0.99 19.41 0.98 9.15 0.99 3.06 0.98 4.45 0.96 2.53 0.84

Lognormal 49.21 0.91 41.51 0.92 4.39 0.93 15.71 0.99 19.88 0.96 9.22 0.99 37.28 0.94 4.45 0.95 10.45 0.91 2.93 0.77

Exponential 133.57 * 83.53 * 18.69 * 18.14 * 7.18 * 96.98 * 80.46 * 49.57 * 93.35 * 3.66 * 

Loglogistic 58.99 0.90 37.57 0.92 3.96 0.93 23.68 0.99 20.67 0.96 10.28 0.99 33.50 0.94 3.10 0.97 7.60 0.93 2.92 0.78

3-Parameter 
Weibull 98.24 0.84 3.90 0.98 0.69 0.99 13.05 0.99 2.62 0.99 17.67 0.98 4.49 0.99 3.29 0.99 3.47 0.99 2.36 0.91

3-Parameter 
Lognormal 50.63 0.92 3.10 0.99 0.67 0.99 10.16 1.00 6.02 0.99 8.12 0.99 2.75 1.00 1.49 0.99 1.54 1.00 2.33 0.89

2-Parameter 
Exponential 100.22 * 82.13 * 16.59 * 39.78 * 7.13 * 88.46 * 77.37 * 46.61 * 91.26 * 3.96 * 

3-Parameter 
Loglogistic 61.07 0.90 5.33 0.98 0.86 0.99 23.02 0.99 12.83 0.98 10.46 0.99 4.75 0.99 0.76 1.00 2.08 0.99 2.30 0.90

Smallest 
Extreme Value 191.63 0.38 69.94 0.91 6.01 0.93 584.98 0.73 125.1 0.81 139.88 0.77 95.32 0.86 30.16 0.84 37.47 0.87 2.38 0.91

Normal 102.77 0.49 9.04 0.98 0.89 0.99 184.82 0.86 30.75 0.92 46.01 0.88 17.42 0.95 7.87 0.93 8.09 0.95 2.33 0.89

Logistic 99.84 0.52 10.52 0.97 0.87 0.98 177.40 0.87 34.19 0.92 43.68 0.89 16.08 0.96 6.73 0.94 8.31 0.96 2.29 0.90

Best-fit model Lognormal  3-parameter 
lognormal

3-parameter 
lognormal

3-parameter 
lognormal Weibull 3-parameter 

lognormal 
3-parameter 
lognormal

3-parameter 
loglogistic

3-parameter 
lognormal

3-parameter 
Weibull 
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Table 2 Goodness-of-fit tests for demographic subgroups of social activities 
 

Assumed Distributions 
 1 2 3 4 5 6 7 8 9 10 11 

Personal 
Type Normal Exponential 2-parameter 

exponential Weibull 3-parameter 
Weibull Lognormal 3-parameter 

lognormal

Smallest 
extreme 

value 
Logistic Loglogistic 3-parameter 

loglogistic

 COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD

AO 0.943 1.60 * 1.79 * 2.048 0.964 1.53 0.965 1.53 0.931 1.72 0.945 1.58 0.919 1.97 0.932 1.67 0.926 1.79 0.935 1.65
AWNC 0.954 5.47 * 3.05 * 3.478 0.987 1.41 0.989 0.87 0.94 6.40 0.988 1.38 0.862 24.01 0.948 6.39 0.94 6.04 0.975 2.75

AWNNC 0.914 14.41 * 5.25 * 4.676 0.995 1.35 0.995 1.31 0.968 7.35 0.989 3.05 0.81 56.27 0.915 16.24 0.966 8.00 0.977 5.97
KEJS 0.964 3.22 * 3.84 * 3.846 0.985 1.58 0.985 1.46 0.938 5.48 0.985 1.20 0.882 15.70 0.956 3.82 0.937 5.53 0.972 2.01
PSS 0.864 7.60 * 2.04 * 2.364 0.991 0.82 0.994 0.63 0.984 1.03 0.991 0.73 0.747 24.49 0.869 6.84 0.981 1.20 0.984 1.06
Sen 0.938 1.86 * 1.73 * 1.756 0.96 1.77 0.983 1.67 0.962 1.73 0.963 1.72 0.897 2.27 0.93 1.90 0.955 1.77 0.957 1.76
SHS 0.972 1.40 * 3.27 * 3.166 0.981 0.71 0.993 0.52 0.928 1.87 0.988 0.70 0.906 5.83 0.963 1.65 0.932 1.84 0.978 1.02
YO 0.854 2.94 * 0.94 * 1.372 0.977 1.11 0.979 0.99 0.982 0.76 0.989 0.71 0.755 9.09 0.86 2.51 0.984 0.69 0.989 0.66

Average 0.93 4.81 N/A 2.74 N/A 2.84 0.98 1.29 0.99 1.12 0.95 3.29 0.98 1.38 0.85 17.45 0.92 5.13 0.95 3.36 0.97 2.11

 
 
 


