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Abstract 

A desirable activity-based travel demand modeling framework should be able to address both 
weekday and weekend activities. However, a literature review shows previous research efforts 
have mostly focused on investigating weekday but not weekend activities. Little or no research 
exists to quantify the differences between weekend and weekday activities. The best knowledge 
to date is limited to weekday and weekend activities starting at different time of the day and with 
different participation rates. This study aims to fill the gap by studying the differences between 
weekday and weekend activities in Calgary, Canada, in terms of their participation rates, starting 
time, duration and inferred location choices. First, statistics of these attributes were computed for 
10 types of weekday and weekend activities and they were found different. Secondly, Log-rank 
and Wilcoxon tests further proved a common type of weekday and weekend activity tend to 
follow different survival functions. Third, best-fit duration models were explored for each type 
of weekday and weekend activity and compared with each other. It was found that Lognormal 
and Weibull were chosen as the best-fit models for nearly all weekday and weekend activities. 
The best-fit duration models for same types of weekday and weekend activities (e.g., shopping) 
were different in either underlying distribution or estimated parameters. This study clearly shows 
the weekend activities are different from their weekday counterparts and suggests that they 
should be treated separately in activity-based modeling frameworks (237 words).  
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Introduction 
Activity-based travel demand modeling is relatively new and has not been widely used in 
practice [1-2]. It has many advantages over traditional trip-based approach, such as 
richness, attractive theoretical elegance, and intuitive implementation with micro-
simulation. It, however, requires significantly more financial and personal resources for 
collecting data and carrying out detailed analysis. Advances in information technology, 
such as object-oriented database design, high-performance computing, and geographic 
information systems (GIS), have made onerous data collection, management, and 
processing easy, and the model development cost has been continuously reduced. All of 
these encourage more such applications in transportation areas. Within activity-based 
modeling framework, duration modeling has stood out as one of important themes as it is 
an inherent nature of any activity. Once activity sequence, duration, and location choices 
are determined, travel can be captured as the “induced” demand raised by other activities.  

A literature review indicates that many studies have been carried out for 
investigating weekday activities and related travels [3-5], but less effort has been placed 
on weekends [6-9]. The logic may be that high travel demand at morning and evening 
peak hours on weekdays result in frequent traffic congestion and thus warrants special 
attention. However, as travel demand increases and infrastructure construction is 
constrained, traffic congestion takes place in recreational areas, major shopping centers, 
sports arenas, and bridges of many big cities over weekends [10]. Moreover, real-time 
traffic operation and management offered by Intelligent Transportation Systems (ITS) 
requires travel demand information on weekends. As such, travel demand modeling on 
weekdays and weekends is required at both the planning and operation levels. It is 
desired to integrate them into one modeling framework. This challenges traditional 
approaches of analyzing weekday and weekend activities separately and warrants a study 
to investigate them together.  

Within the existing literature of modeling weekday and weekend activities, none 
has been found to study the differences of the two. The knowledge is generally limited to 
that weekday and weekend activities have different participation rates and starting time 
[11]. Therefore, this study is aimed to empirically quantify the difference of weekday and 
weekend activities, in terms of their activity type, starting time, duration, and inferred 
location choices. The best-fit duration models for individual weekday and weekend 
activities are also explored and compared.   

In this study, a general picture of 10 weekday and weekend household activities is 
presented first. Comparisons are made in terms of their participation rates, starting time, 
and durations. Secondly, the Kaplan-Meier method is used to test whether a same type of 
weekend/weekday activity would follow the same survival function. The analyses are 
then continued by choosing the best-fit hazard functions for each type of 
weekday/weekend activity. For each weekday and corresponding weekend activity, the 
best-fit models are specified and compared with each other.  

The rest of the paper is organized as the following. First, a literature review for 
duration models in general and their applications for weekend/weekday activity modeling 
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in particular is presented; then the data used in this study are briefly introduced; study 
models and results are discussed; and finally, major findings and conclusions are given.  

Literature Review 

Review of duration models 
The statistical analysis of what are called as lifetime, survival time, or failure time data is 
known as duration modeling or hazard modeling, and has long been an important topic in 
many areas, such as biomedical, engineering, and social sciences [12]. For example, 
Bartholomew [13] used duration models to study the lifetime distribution of equipment. 
Prentice [14] compared the effects of two chemotherapy treatments in prolonging 
survival time of 40 advanced lung cancer patients. Nevertheless, duration models have 
been increasingly used recently in transportation area [1-2].  

The key element of duration modeling is hazard functions, which indicate the way 
that the risk or probability of failure varies with age or time [12]. A hazard function h(t) 
that expresses the probability of the occurrence of an event during a certain time interval, 
say t to t + Δt, given that the event has not occurred or ended before the beginning of the 
interval. The conditional probability of duration starting or ending plays an important role 
as the probability indicates that an event starts or terminates depends on the length of 
time or the duration has lasted [12].  

Let T be a nonnegative random variable representing the lifetime of individuals in 
some population. Here only a continuous variable T is assumed (discrete T can be 
accommodated by considering the discretization as a result of segmentation of continuous 
time into several discrete intervals), as this is the case for most applications. Let the 
probability density function (PDF) of T is f(t) and the cumulative distribution function 
(CDF) is F(t). Then we have: 

)()( tTPtF <=         (1) 

Where t is some specific time period. In the case of household activities, the CDF 
is defined to indicate the probability of an activity would last less than a specified time 
period, t.  Then the PDF, f(t) can be obtained: 

dt
tdFtf )()( =          (2) 

This provides unconditional distribution of duration T. The survival function (SF), 
S(t), is then can be defined as:  
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The above survival function represents the probability that the duration in a state 
T will be greater than or equal to the specific time t. The hazard function can then be 
expressed as a function of the PDF f(t), the CDF F(t) and SF S(t), as shown in the 
following equation: 
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The hazard, h(t), gives the rate at which events (e.g., ending an activity) are 
occurring at time t, given that the events have not occurred up to time t [12].  

Parametric models 
Both proportional hazard and accelerated time type of parametric models have been used 
in the analysis of lifetime data [1, 12]. The accelerated-time models assume that the effect 
of covariates is equivalent to altering the rate at which time passes, whereas the 
proportional-hazard models assume the covariates affect the hazard function for T [12]. 
Among these models, a few distributions demonstrate their significance and have been 
applied in a wide range of situations [12]. These distributions are Exponential, Weibull, 
Log-logistic, Log-normal, extreme value (Gumbel) and Gamma. For a complete 
discussion about parametric duration models, please see Lawless [12].  

Semi-parametric models 

When there is no clear choice concerning hazard functions, another safer approach is to 
use semi-parametric hazard models [12]. For these models, there is no distributional 
assumption for the baseline hazard and leave it arbitrary, but assumption is made 
concerning the functional form specifying how the external covariates interact with the 
baseline hazard in the model. The semi-parametric models partially relax the assumption 
of parametric relationship between various factors and resulting hazard rate. However, it 
should be noted that the semi-parametric models stand on strong assumptions regarding 
how external covariates interact with the baseline hazards, and require careful checking 
in applications [12]. Moreover, if the hazard is generated from a known distribution and a 
semi-parametric model is applied, statistical efficiency will be lost since information 
regarding the hazard’s distribution is not being used. This could result in less precise 
coefficient estimates as reflected by their higher standard errors [2]. 

Nonparametric models 
The above parametric or semi-parametric hazard functions could be applied to questions 
with sound theoretical foundation. However, in some cases, if little or no knowledge of 
the functional form of the hazard is available, one might consider to use a non-parametric 
approach, for which there is no assumption involved concerning the underlying 
distribution of the baseline hazard [12]. The most popular nonparametric method is the 
Kaplan-Meier Estimator. For such an approach, the duration scale is split into small 
discrete periods and by assuming a constant hazard within each period, one can then 
estimate the continuous-time step function hazard shape. The Kaplan-Meier Estimator is 
particularly good in situations where there are a small number of groups and we want to 
examine whether they have similar survival distributions.  

Several statistics, such as Log-Rank and the Wilcoxon, are usually used in such a 
test. The Log-Rank test is a form of Chi-square test, which calculates a statistic for 
testing the null hypothesis that the survival curves are the same for all groups. The Log-
Rank test statistic is often approximated by the following equation: 

BBBAAA EEOEEO /)(/)()1( 222 −+−=χ           (5) 
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Where OA, EA, OB, EB are the observed & expected number of the events in group 
A and B respectively. The expected number of occurred events is calculated as, for group 
A at time i: 

itimeatoccurredeventsofnumberthe
itimeatriskateventsofnumberTotal

itimeatriskateventsofNumberE A
i ×=              (6) 

Breslow [15] has shown the Log-Rank test is appropriate for survival functions 
with a “proportional hazard”, that is, the relative hazard does not change with time. When 
the hazard rates change with time, the Wilcoxon test is more appropriate [15]. The 
Wilcoxon statistic is to compute the sum of how many times the lifetime observations in 
one group are larger than those in another one. For two groups with a size of m and n, the 
total number of matches is m × n. If the two samples are assumed to have a same lifetime 
distribution, then it is expected that the times of lifetime observations in one group 
exceed those in the other group should be half of this number, that is, it should be equal 

to or about 
2

nm× . A non-parametric test, which uses re-sampling techniques to calculate 

a p-value based on observed values from the group, is usually used to test if the null 
hypothesis that the two samples are from a same population is true [16].  

The nonparametric shape obtained from the Kaplan-Meier Estimator is also useful 
for empirically testing the assumed parametric baseline shapes [12]. However, analyst 
cannot incorporate any explanatory variable for policy analysis with such an approach. 

Duration modeling of weekend and weekday activity patterns 
A review of the literature indicates that limited efforts have been contributed to model 
activity durations, even it is an integrated part of activity-based modeling frameworks. 
For example, Kitamura et al. [17] mentioned that only Weibull distributions are 
considered for exclusively modeling durations of 18 daily activities, such as sleep, 
personal care, child care, meal, domestic chore, work and work-related school and study, 
in a framework called PCATS. Recent developments in the area consist of proposing a 
general framework for modeling workers or commuters’ activity and travel patterns [5, 
18-20], but none of them explicitly modeled the durations of considered activities. The 
consequence of little research contribution in this area led to that the practitioners used 
observed duration distributions in their models [21].  

Among the scare literature available for weekend activity duration modeling, a 
group of scholars at the University of Texas at Austin stand out and contributed a few 
studies [6-9, 22]. In particular, Lockwood et al. [22] provided a comprehensive 
exploratory analysis of nine categories of weekend activities, including average 
frequency and durations, time of day of travel, model of travel by trip purpose, trip 
distance by purpose, total volume of travel by trip purpose, sequencing of activity 
episodes, activity episode chaining, and activity purpose of the first and last out-of-home 
episode of the day. They basically presented a comprehensive view of weekend activities 
in the Bay Area by a series of statistical analyses, but no attempts were made to specify 
duration models for individual activities.  Although Bhat and Srinivasan [8] and Sall et al. 
[9] outlined the methodologies of duration modelling in their weekend activity analysis 
framework, no statistical results were provided.  
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There are a number of recent studies applying duration models for non-work 
activities (may not be weekend activities). Ettema et al. [23] applied competing risk 
hazard models for modeling activity choice, timing, sequencing, and duration of 39 
students at the Eindhoven University of Technology, Netherlands. Chu [24] used a Type 
II Tobit model to model workers’ daily non-work activity durations with 1997/98 New 
York household survey data. Hamed and Mannering [25] estimated travel time from 
work to home and activity durations with ordinary least squares regression and three-
stage least squares regression. The corrected R2 of 0.11 was reported for the ordinary 
least squares regression and 0.188 for the three-stage least squares regression. Mannering 
and Hamed [26] used a Weibull-based duration model for estimating commuters’ work-
to-home departure delay time in Seattle. The choice of the Weibull distribution is based 
on their finding that that the end of a departure delay can be viewed as being induced by 
any one of a number of random factors, such as decrease in homeward traffic congestion, 
boredom with the activity undertaken, completion of activity undertaken, etc. They 
argued that, since the end of departure delay depends on the shortest time to the 
occurrence of one of these random factors, it should follow a distribution of the smallest 
extreme and therefore the Weibull distribution is appropriate [26]. They achieved a 
standard error of 0.148 for the duration parameter estimates.   

Duration modeling has also been widely applied to other transportation 
applications. For example, Nam and Mannering [27] used hazard-based duration models 
to evaluate the time of incident detection/reporting, response, and clearance in 
Washington State. Paselk and Mannering [28] used Log-logistic duration models to 
predict vehicular delay at a US/Canadian border crossing. They found that the duration 
models are better alternatives for traditional queuing analysis as it is not easy to capture 
duration dependence effect with such a tool [28]. Stathopoulos and Karlaftis [29] 
examined four most widely used hazard functions for modeling congestion durations in 
Athens, and found that the Log-logistic form is most appropriate. Hensher and Mannering 
[2] provided a comprehensive review for the applications of hazard-based duration 
models in transport analysis. Lawless reviewed many applications other than 
transportation [12]. For a complete review of duration models and their applications, 
please consult this literature.  

Study Data and Primary Analyses 
A large scale of household activity survey was completed in the City of Calgary, Canada 
in late 2001 and early 2002 [30]. The purpose of the survey was to collect data for both 
short-term traffic operational analysis and long-term transportation planning. The data 
provides excellent opportunities for analyzing weekday and weekend activities and 
related travel behaviors, and is expected to provide insights for future policy analysis. 

The data include detailed socioeconomic information of the person being 
surveyed and attributes of executed activities, such as personal type, employment status 
(fulltime or part-time), annual income level, gender, age, household size (persons in 
household), driving capability (licensed or not), activity type, activity durations (in 
minutes), and starting & ending time of each activity. The 10 activities investigated in 
this study include A) travel related activity (e.g., dropping off or picking up a person), D) 
working, E) schooling, F) shopping, I) sociality, J) eating, K) entertainment, M) exercise, 
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N) religious activities, and Z) out-of-town travel. The activity types and their labels were 
defined during the survey and they are used here directly. Approximately 13,000 
weekday and weekend observations are used in this study.  

Figure 1 shows the weekend (a) and weekday (b) household activity patterns. It is 
clear from Figure 1(a) that, except for the Religious and Civic activity, all of the other 
weekend activities start in the afternoon (after the middle point of 0.5 – the noon) and 
there is usually only one afternoon peak for the weekend activities. For example, the 
weekend shopping, sociality and entertainment/leisure activities show exactly such 
patterns. In contrast, Figure 1(b) shows that, in general, weekday activities start in the 
morning and there are both morning and afternoon peaks of work and school related 
activities. Comparison made between Figure 1(a) and 1(b) indicates that the amount of 
individual activities is consistent with the expected weekly periodicity. For example, 
there are much more work and school related activities during weekdays, but less 
shopping, religious, sociality, entertainment activities, whereas the weekends show the 
reversed patterns. The weekend activity patterns indicate that a corresponding high traffic 
demand will be introduced over a short period in the afternoon. This could potentially 
challenge weekday-based urban traffic management systems and a distinct traffic 
operation strategy may be required.   

Figure 2 show (a) weekday and  (b) weekend activity participation rates. It is clear 
from the comparison of the two that there are more travel and work/school-related 
activities during the weekdays, whereas the weekends are distinguished with more 
shopping and sociality/leisure-related activities. For example, the total participation rate 
for work and school during the weekdays is 13.8%, but it is reduced to 3.5% on the 
weekends. The total participation rate for typical weekend activities (including shopping, 
sociality, and entertainment/leisure) is only 21.5% during the weekdays, but it is 
increased to over 33% on the weekends. The activity participation rates shown here imply 
different location choices between weekdays and weekends, as people would have to 
travel to different destinations to fulfill their goals.  

Table 1 compares the mean, median and the 75th percentile durations for the same 
types of weekday and weekend activities. The difference is evaluated by a percent error 
(PE) calculated using the following equation: 

%100×
−

=
parameterweekday

parameterweekdayparameterweekendPE                                     (7)  

The results in Table 1 show that weekday travel, school, and out-of-town 
activities usually last longer than their weekend counterparts, but all the other activities 
tend to have shorter durations. The differences are usually within 20% of each other for 
corresponding weekday and weekend Travel, Work, School, Shopping, Eating, 
Entertainment/Leisure (Ent/Leis), Exercise activities. However, there are much larger 
differences for Sociality, Religious, Civil etc., and Out-of-town activities. The differences 
are all more than 30-40%, with some as high as 76%. Such large differences emphasize 
these activities are typical weekend types. Another finding from Table 1 is that there are 
large differences between the mean levels of durations of different activities. For 
example, the mean duration of travel related activities (drop-by etc.) is 18 minutes, 
whereas working activities on average last for over 200 minutes. The large differences 
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between the mean and median durations of different activities emphasize that they should 
be modeled separately.  

Study Results 
The statistical analyses in the above section show that weekday and corresponding 
weekend activities are different in terms of their starting time, duration, participation 
rates and consequently location choices. This may imply that an activity-based modeling 
framework needs address them separately, and thus would unavoidably increase 
modeling complexity. Therefore, an interesting question raised with this issue is: whether 
weekday and weekend activities follow similar underlying distributions and can they be 
combined and modeled together? The section focuses on this question.  

First, Kaplan-Meier tests are used to check whether corresponding weekday and 
weekend activity follow a same survival duration function. The method used in this study 
involves visually comparing the survival functions of the same type of weekend and 
weekday activity and calculating the following two statistics: Log-Rank and Wilcoxon. 
Figure 3 shows such a test for comparing weekday and weekend shopping durations. It 
can be seen that the two patterns meet each other quite well at the each end, but have 
significant differences in the middle range, especially from 30 to 200 minutes. The 
weekend pattern clearly shows a longer duration than its weekday counterpart. The Log-
Rank and Wilcoxon statistics shown in Figure 3 also emphasize that the two distributions 
are significantly different at the 95% confidence level, as the p-values are all less than 
0.05. Table 2 lists the Log-Rank and Wilcoxon statistics for all weekday and weekend 
activity pairs. The Chi-square statistic for either the Log-Rank or the Wilcoxon test is 
significant at 95% confidence level in 9 out of 10 cases. It is interesting to note that the 
weekday and weekend working durations are not significantly different indicating they 
may be combined in future modeling exercises.   

The above analyses show that, in general, pairs of weekday and weekend activity 
durations distribute differently and suggest that they should be modeled separately 
(except for the working activity). The next task is then to identify the best-fit duration 
models for these activities and to see if they share a same type of best-fit model. The 
analyses are done by fitting weekday and weekend activity durations individually and 
then comparing them. Eleven parametric duration models available from MINITAB are 
fitted against each weekday and weekend activity, and the best-fit parametric models are 
identified. The following distributions are tested: Weibull, Lognormal, Exponential, Log-
logistic, 3-parameter Weibull, 3-parameter Lognormal, 2-parameter Exponential, 3-
parameter Log-logistic, Smallest extreme value, Normal, and Logistic. The distributions 
are tested and the goodness-of-fit is evaluated with adjusted Anderson-Darling test 
statistics (AD values in the table) and correlation coefficients (COR in the table). The 
criterion is to select the distribution with the lowest AD value or the highest COR value 
[31].  

Table 3 shows the analysis results. For illustration purpose, the AD and COR 
values for the best-fit models are highlighted with bold fonts. To facilitate the 
presentation, the results for weekday and weekend activities are color-coded with red and 
black respectively. In general, it can be seen that a relatively high-level of goodness-of-fit 
is achieved, which is shown by universally high COR Values greater than 0.98. The AD 
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values vary greatly from as low as less than 1 to over 500, depending on which 
distribution is selected and how many observations are available for fitting. In general, 
AD values greater than 2.5 indicate a lack of fit [32] and they are observed for nearly half 
cases. Detailed analysis indicates that this is resulted from imputed durations, which 
mostly cluster to certain integer spells (e.g., 1, 5, or 10 minutes). These highly imputed 
durations result in large AD values as Anderson-Darling tests emphasize more on the fit 
of the tails [31].  

The resulting best-fit models selected for the 10 weekend activities are (as 
indicated by AD and COR values coded by black bold fonts in Table 3): 3-parameter 
Lognormal for Travel Related activity, Shopping, and Eating; Weibull or 3-parameter 
Weibull for Work, School, Sociality, Entertainment/Leisure, and Out-of-town activity; 
and Log-logistic or 3-parameter Log-logistic for the Exercise and Religious etc. activity, 
as shown in Table 3. The Weibull, especially 3-parameter Weibull, are identified as most 
applicable model, followed by Lognormal and Log-logistics.  

The best-fit models selected for the 10 weekday activities are shown in Table 3, as 
indicated by AD and COR values coded with the red bold fonts: Lognormal or 3-
parameter Lognormal for Travel Related activity, Work, School, Eating and Religious etc. 
activity; Weibull or 3-parameter Weibull for the remaining activities, which include 
Sociality, Entertainment/Leisure, Exercise, and Out-of-town. In contrast to the results for 
the weekend activities, only Lognormal and Weibull are judged as best-fit models.  

The best-fit models selected above are further proved by visually comparing the 
fitted lines with observed cumulative distribution functions (CDFs). Figure 4(a) shows 
such an example for the weekend shopping activity. The 3-parameter Lognormal model 
fits the observed durations very well (with a COR value of 0.99, Table 3). Figure 4(b) 
shows the probability density function (PDF), the probability plot, survival function (SF), 
and hazard function (HF) based on the selected 3-parameter Lognormal model.  The data 
shows that most people have a shopping duration less than 75 minutes, as the area under 
the PDF greater than this value is very small and the survival rate is very low (less than 
20%). The highest hazard rate for the activity is found about 0.03 at 25 minutes. The HF 
shows a rapid increasing trend from the starting point to the peak and a fairly flat 
diminishing rate after that point. Such a HF pattern indicates that people with a shopping 
duration of less than 25 minutes are more sensitive to the time spent because the hazard 
of abandoning the activity increases very quickly as time elapses. In contrast, those who 
stay longer than 25 minutes tend to stay longer as their hazard rates begin to drop. The 
probability plot on the same figure also indicates a good fit between the theoretical 
function and the observed durations. However, a noticeable deviation at the lower left 
corner can be observed. Close examination of the data indicates it is resulting from the 
“imputed nature” of reported durations, as people tend to declare their durations with 
integer values, such as 1, 2, 5, or 10 minutes.   

Attempts for testing semi-parametric models are abandoned because the 
competing parametric models are found to have a high degree of fit. In such cases, 
parametric approaches are preferred since they are more accurate and efficient, and they 
are better understood by practitioners.  



 11

Concluding Remarks 

The credibility of transportation planning has been significantly improved through 
detailed study of household activities and induced travel patterns. Previous research has 
been focused on weekday activities, but little emphasis has been placed on their weekend 
counterparts [21]. This paper compares the weekday and weekend household activities in 
the context of the City of Calgary, Canada. The attempts made in this study include 
comparing the household weekday and weekend activity patterns in terms of their 
participation rates, starting time, duration, and “inferred” location choice; and specifying 
best-fit parametric models for individual weekday and weekend activities.  

Pattern analyses show that weekend activities are quite different with their 
weekday counterparts. There is only one peak for most of weekend activities (e.g., 
shopping) and the peak is usually around or after the noon. On the contrary, most 
weekday patterns show two peaks, one in the morning and the other in the afternoon. 
Such a finding confirms the distinction between weekday and weekend travel patterns 
and suggests different traffic operation strategies may have to be applied.  

A comparison between weekday and weekend activity participation rates shows 
that there are more travel and work/school-related activities during the weekdays, 
whereas, in contrast, the weekends are distinguished with more shopping and 
sociality/leisure-related activities. For example, the participation rate for non-work/school 
related activities (including Shopping, Sociality, and Entertainment/Leisure) is only 
21.5% of the total during the weekdays, but it is increased to over 33% on the weekends. 
The different activity participation rates over weekdays and weekends imply shifts in 
people’s location choices and thus their travel patterns. Significant increases in non-
work/school activities during the weekends suggest we need pay more attention to related 
travels.  

Descriptive statistics, such as mean, median, and the 75th percentile, are used to 
evaluate the differences between weekday and weekend duration patterns. It is found that 
there are large differences. In general, weekday School, Travel Related and Out-of-town 
activities are longer than those executed over the weekends. On the contrary, the other 
activities tend to last longer during the weekends.  

The fact that durations of weekday activities and their weekend counterparts are 
different is further proved with Kaplan-Meier non-parametric tests. The Log-Rank and 
Wilcoxon test statistics are significant at the 95% confidence level in most case, which 
reject the hypothesis that the weekday activities and their weekend counterparts follow 
same duration distributions.  

Eleven parametric duration models are used to fit the 10 types of weekday and 
weekend activities. It is found, in general, a high-level of goodness-of-fit is achieved 
across all types of activities. The best-fit models identified for the weekday and weekend 
activities are 3-parameter Lognormal, Weibull/3-parameter Weibull, or Log-logistics/3-
parameter Log-logistics. The obtained COR values for the best-fit models are all equal or 
more than 0.98. However, the large AD values for half cases indicate a lack of fit. 
Detailed analysis indicates that they are resulted from the “imputed nature” of reported 
durations.  
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The duration models developed here will be used in the Calgary household 
modeling framework. The aim is to replace previous “static” duration models based on 
weighted samples from observed durations. The models developed in this study explicitly 
consider many characteristics of individuals and activities, but do not incorporate those 
variables by which some important policy analyses can be made, such as transit fare and 
waiting time. For example, if the city government could provide transit service with 
much lower fare and less waiting time, we would assume people would travel more for 
visiting more locations and thus they would stay for a shorter period than before at any 
given location. Currently, this is limited by the data used. Future research could include 
these variables into the analysis once such information is available.  Another issue 
identified during this research is the “rounding” of reported durations. These “imputed” 
durations result in deteriorated fit. It is expected that the developed models could be more 
accurate if “real” durations would have been reported in the data. Such a problem may be 
solved by “imputing” these rounded observations back into a normally distributed 
population. Future research is going to explore such an issue.  
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Table 1. Percent difference for the weekday and weekend activity durations 
 

Travel etc. Work School Shopping 
 weekday weekend Difference weekday weekend Difference weekday Weekend Difference weekday weekend Difference 
Mean 18.7 18.1 -3.5% 229.4 249.6 8.8% 175.3 148.7 -15.2% 44.9 50.3 11.9% 
Median 15.0 15.0 0.0% 210.0 227.5 8.3% 150.0 120.0 -20.0% 30.0 35.0 16.7% 
P75 25.0 20.0 -20.0% 300.0 369.0 23.0% 215.0 197.5 -8.1% 60.0 69.5 15.8% 

 
Sociality  Eating  Ent/Leis  Exercise  

 weekday weekend Difference weekday weekend Difference weekday Weekend Difference weekday weekend Difference 
Mean 82.0 128.3 56.5% 36.6 42.0 14.9% 125.4 143.9 14.7% 64.0 76.0 18.7% 
Median 60.0 105.0 75.0% 30.0 30.0 0.0% 110.0 120.0 9.1% 60.0 60.0 0.0% 
P75 110.0 165.0 50.0% 45.0 60.0 33.3% 180.0 210.0 16.7% 89.0 90.0 1.1% 

 
Religious, Civil etc.  Out of Town  

 weekday weekend Difference weekday weekend Difference
Mean 63.9 112.8 76.5% 772.4 492.1 -36.3%
Median 20.0 105.0 425.0% 735.0 425.0 -42.2%
P75 79.3 130.0 64.0% 962.5 720.0 -25.2%
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Table 2 Statistics for Log-Rank and Wilcoxon tests 
 

Log-Rank Wilcoxon 
Activity Chi-Square p-value Chi-square  p-value 

A. Travel etc. 4.73 0.030 6.74 0.009

D. Work 3.25 0.071 0.65 0.418

E. School 3.47 0.062 5.70 0.017

F. Shopping 4.51 0.034 3.93 0.047

I. Sociality 35.88 0.00 45.58 0.00

J. Eating 46.89 0.00 47.96 0.00

K. Ent/Leis 30.41 0.00 24.99 0.00

M. Exercise 4.00 0.045 1.65 0.199

N. Religious, Civic, etc. 35.68 0.00 90.53 0.00

Z. Out of Town 3.90 0.048 7.89 0.005
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Table 3 Goodness-of-fit tests for individual weekday and weekend activities 
 

 Travel Related Work School Shopping Sociality Eating Ent/Leis Exercise Religious 
etc. Out of town

Distribution 

 
Weekday/ 
weekend 

AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR AD COR

Weekday 63.02 0.97 6.28 0.99 3.71 0.99 6.21 0.97 0.52 0.99 76.09 0.96 5.35 0.99 1.81 0.98 10.83 0.89 1.26 0.97 
Weibull 

Weekend 103.15 0.96 1.434 0.99 0.87 0.99 9.58 0.98 0.68 1.00 84.05 0.96 5.27 1.00 4.01 0.96 3.38 0.97 0.71 0.99 

Weekday 42.01 0.99 25.49 0.95 6.29 0.98 1.77 0.99 3.63 0.97 42.33 0.98 14.65 0.98 2.35 0.98 2.95 0.96 1.01 0.99 
Lognormal 

Weekend 53.07 0.98 6.13 0.94 1.10 0.99 3.75 0.99 4.97 0.97 45.06 0.98 21.10 0.98 0.97 0.99 3.46 0.94 1.70 0.97 

Weekday 209.26 * 67.27 * 37.37 * 4.52 * 0.86 * 298.78 * 90.89 * 26.84 * 22.04 * 5.99 * 
Exponential 

Weekend 232.23 * 10.29 * 6.41 * 5.55 * 9.79 * 308.36 * 136.19 * 14.76 * 29.89 * 5.95 * 

Weekday 48.39 0.99 24.89 0.95 6.34 0.97 2.86 0.99 3.64 0.97 43.79 0.98 19.50 0.98 2.68 0.98 3.57 0.96 1.05 0.98 
Loglogistic 

Weekend 52.52 0.98 5.81 0.94 1.36 0.98 7.06 0.98 4.64 0.97 49.05 0.98 25.45 0.97 0.95 0.99 2.42 0.96 1.95 0.96 

Weekday 43.21 0.98 6.40 0.99 3.18 0.99 2.59 0.98 0.58 0.99 64.72 0.97 4.83 0.99 1.35 0.99 3.52 0.96 0.99 0.99 3-Parameter 
Weibull Weekend 77.79 0.97 0.84 1.00 0.51 1.00 6.10 0.98 0.67 1.00 73.35 0.96 4.77 1.00 1.99 0.98 3.87 0.97 0.78 0.99 

Weekday 35.61 0.99 4.76 0.99 2.78 0.99 1.50 0.99 0.99 0.99 42.18 0.98 7.23 0.99 1.50 0.99 1.55 0.98 1.01 0.99 3-Parameter 
Lognormal Weekend 50.93 0.98 1.22 0.99 0.66 0.99 3.23 0.99 0.95 0.99 45.85 0.98 9.33 0.99 0.97 0.99 1.89 0.98 0.80 0.99 

Weekday 140.34 * 64.33 * 31.13 * 10.30 * 2.86 * 252.10 * 86.41 * 14.55 * 13.57 * 1.53 * 2-Parameter 
Exponential Weekend 167.58 * 10.02 * 3.58 * 3.34 * 9.00 * 266.61 * 130.67 * 6.77 * 26.20 * 3.57 * 

Weekday 46.18 0.99 6.83 0.98 3.27 0.98 2.86 0.99 1.95 0.98 44.17 0.98 16.28 0.98 2.05 0.98 1.74 0.98 1.05 0.98 3-Parameter 
Loglogistic Weekend 52.23 0.98 2.42 0.98 1.15 0.99 7.07 0.98 2.16 0.99 50.14 0.98 21.72 0.98 0.98 0.99 1.27 0.99 1.14 0.98 

Weekday 455.84 0.67 90.13 0.89 60.49 0.85 71.22 0.68 36.03 0.71 262.12 0.79 131.90 0.86 12.10 0.88 24.29 0.51 1.77 0.94 Smallest 
Extreme Value Weekend 519.70 0.66 21.25 0.89 13.46 0.84 131.05 0.78 52.77 0.84 261.01 0.79 172.64 0.87 22.19 0.75 29.04 0.83 5.03 0.92 

Weekday 161.42 0.78 14.63 0.97 12.53 0.95 24.34 0.80 11.41 0.83 92.95 0.89 26.22 0.96 2.82 0.96 15.68 0.64 1.09 0.98 
Normal 

Weekend 221.91 0.78 4.12 0.97 3.38 0.94 37.32 0.90 11.31 0.94 96.24 0.89 34.08 0.96 7.85 0.86 6.82 0.92 1.13 0.98 

Weekday 152.49 0.81 14.52 0.96 11.38 0.95 23.21 0.82 10.91 0.84 94.64 0.90 30.28 0.95 3.00 0.96 14.82 0.67 1.12 0.97 
Logistic 

Weekend 205.59 0.81 5.02 0.96 3.27 0.94 37.06 0.90 11.38 0.94 98.78 0.90 43.45 0.96 6.57 0.88 5.53 0.93 1.35 0.97 
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Figure 1 Comparison of household weekend (a) and weekday (b) activity patterns 
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(a) weekday participation rates
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(b) weekend participation rates
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Figure 2 Calgary weekday and weekend activity participation rates 
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Figure 3 Kaplan-Meier test for weekday and weekend shopping activity 
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Figure 4(a) empirical cumulative distribution function (b) distribution overview plot for 

weekend shopping activities 
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