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ABSTRACT
The efficient and safe movement of freight is one of the important goals of urban transportation 
systems and vital to not only the local economy, but nationally as well. Given the importance of 
the freight transportation system, opportunities to utilize state of the art Intelligent Transportation 
Systems (ITS) technologies are increasing to improve the operation of the existing infrastructure 
to promote the efficient and safe transportation of freight. Among these technologies, a Truck 
Signal Priority (TkSP) strategy gives priority to a traffic signal approach when trucks are 
detected. By using the rich data available through the use of video sensors, the use such a 
strategy can improve the efficiency and safety of freight movement by reducing truck travel time 
and the number of truck stops at the intersection. 

This paper presents a prototype TkSP system using video sensors to detect, identify and track 
trucks. A classification module takes the road users' trajectories as input, and classifies them as 
either truck or non-truck. Using a mixture of Gaussians to model the background, the 
appearance and shape of road users in each frame is extracted. Using labeled shape data, a 
classifier is trained. A road user will be classified as a truck if its shape is classified as such in 
enough frames. The system is tested on real world data from the Next Generation SIMulation 
project (NGSIM). The truck recall reaches 78% to 95%, with a false alarm rate below the 0.5% 
value (used to test different scenarios in traffic simulation not presented in this document). This 
shows that the performance required for effective advanced truck signal priority is reached or 
within reach of automated video-based sensors. 
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1.Introduction
The efficient and safe movement of freight is one of the important goals of urban transportation 
systems. Provision of efficient infrastructure for freight movement provides the basis for regional 
and national economies, directly sustains hundreds of thousands of jobs, and distributes the 
necessities of life to every resident and business every day. Greater Vancouver faces a special 
challenge given its nature as a gateway city to the Pacific Rim. It is a point of significant 
intermodal transportation movements, air, water, rail and long-haul trucking. Trade moves 
through Greater Vancouver, both to and from the rest of Canada, the U.S. and Asia.

Given the importance of the freight transportation system and the limited urban space available 
for the expansion of the transportation network, it is becoming important to take advantage of 
state of the art Intelligent Transportation System (ITS) technologies to improve the operation of 
the existing infrastructure to promote the efficient and safe transportation of freight. 

Truck Signal Priority (TkSP) is one of the methods that can be used to improve the efficiency 
and safety of freight movement without major capital investment. A TkSP strategy gives priority 
to a traffic signal approach when trucks are detected. By implementing a TkSP strategy, the 
truck travel time can be decreased and consequently the cost of goods movement reduced. In 
addition, there are safety benefits from reducing the number of stops of trucks approaching the 
intersection at the end of the green phase, which may reduce red light running. Reducing the 
number of stops for trucks should also have a positive effect on emissions and noise. Finally, it 
may be used to encourage trucks to use specific routes.

The goal of this project is to develop a prototype truck detection and tracking system using 
video sensors. Video sensors should be able to detect, identify, and track heavy trucks traveling 
within a corridor. Real time data collected by video sensors provide a rich source of information 
that can be readily available for decision on signal control. However, the information from such 
sensors can be marred with errors, one of the major challenges in the use of these sensor 
technologies. It seems that for the application of truck signal priority, false alarms are the more 
detrimental of the two types of detection errors, as they may trigger a signal priority in the 
absence of any truck. Hence particular attention was paid to minimize the false alarms rate.

The difficulty of road user tracking in video data depends on the environment. The system 
presented in this paper targets typically environments such as major roads and highways which 
may be qualified as more controlled and present easier behavior patterns (most road user 
movements are straight with occasional lane changes) than for example urban intersections. 
Other common problems for tracking are global illumination variations, shadow handling, 
multiple object tracking and classification. 

This work relies on an existing system developed at the University of British Columbia for traffic 
data collection and especially for automated road safety analysis. It has already been used for 
traffic conflict detection [SS07], and to demonstrate a new probabilistic framework for automated 
road safety analysis [SS08]. The readers are referred to [SS06] for more details.

This paper presents the classification module that takes the road users' trajectories as input, 
and classifies them as either truck or non-truck. The next section presents the literature review 
on object detection in images. Section 3. describes the proposed approach for truck 

3



classification. Section 4. will demonstrate the performance of the system on a few video 
sequences. Section 5. concludes and offers some perspectives on future work. 

2.Literature Review on Object Classification in Images
Significant progress in object classification in images has been made over the recent years, but 
generic multi-class object classification is still a very challenging task. There are many types of 
road users, the inter-class differences in appearance can be subtle (e.g. there are nine classes 
of trucks in the classification of the Federal Highway Administration) while the intra-class 
variance in appearance can be high (e.g. with various painting colors and sizes). Large datasets 
have been made available recently for competitions and prove to be very complex for the most 
advanced techniques (See the PASCAL Visual Object Classes datasets and the corresponding 
competitions1). 

Most of the research boils down to the design and extraction of the best features or variables to 
describe the objects in images. There are two main classes of description variables:

•Variables describing the appearance of the object, i.e. the pixels. New features have been 
successfully developed, in particular to be invariant to various image transformations like 
translation, rotation and scaling. Among them are the Histogram of Gradients features (HoG) 
[DT05], Scale-invariant feature transform features (SIFT) [Low04] and other edge-based 
features [MG05], and more plausible biological models based on Gabor filters. Other 
approaches use simple filters and classifiers to learn automatically the best image descriptors 
for the task [VJ01] [WMM+08]. 

•Variables describing the shape, or contour, of the object. A good overview can be found in 
[Bos05]. The simplest are the area and aspect ratio of the bounding box of the object. 

Once object instances are turned into numerical vectors, this becomes a more traditional 
classification problem that can be addressed using machine learning techniques to learn 
generative or discriminative models. The readers are referred to [DH00] for a comprehensive 
introduction to the field of machine learning. A famous application to real-time face recognition is 
Viola and Jones’s work using boosted cascades of classifiers [VJ01]. Another very popular state 
of the art technique is Support Vector Machines (SVM) used for example in [DT05]. There is 
also a renewal of interest for nearest-neighbor techniques for object classification [BSI08] 
[HK05] [MT08]. 

Road user classification is a useful addition to a traffic monitoring system, and work has already 
been done in this area. An early simple system [LFP98] tracks and classifies vehicles and 
human beings. Tracking relies on temporal differencing and template correlation. There are only 
two description variables: the object area and the “dispersedness”, defined as the ratio of the 
perimeter over the area. The classification is done using a Mahalanobis-based distance, and the 
correct classification ratio is respectively 86.8% and 82.8% for vehicles and human beings. 

The most common classification approach in traffic monitoring is to use the estimated object 
dimensions, possibly by fitting a (3D-) model. The system described in [GMPP02] tracks 

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/. In the 2008 challenge results, average precision of 
the car and bus classes are respectively lower than 60% and 52%.
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correctly 90% of the total number of vehicles, among which 70% are correctly classified using 
vehicle dimensions. Very accurate methods to estimate vehicle dimension are presented in 
[PLY07]. More complex 3D models are used in [MMZ05] to classify vehicles into eight classes. 
For real-time requirements they are pre-projected off-line in the image space for direct 
comparison. The object description includes other visual features such as brightness and color 
histograms. In addition to dimension-based classification, a support vector machine classifier is 
used to further differentiate sub-classes like bicycles and motorbikes, buses and trucks. It 
reports a global correct detection rate of 92.5%, though it varies considerably for each class. In 
[KB08], more than 90% of road users are correctly classified in a simpler highway setting. This 
good performance is achieved using feature-based tracking and the number of features 
associated to the object height.

Yet, as noted in [HK02], it is difficult to establish a geometric model for each class. Following 
[LFP98], other approaches use more description variables. The system described in [HK02] 
attempts to classify road users as well as estimate their color. It uses mainly shape-based 
variables, projects the object description to a space with fewer dimension by Linear Discriminant 
Analysis (LDA) and finally classifies the objects using a weighted nearest neighbor technique. It 
approaches 91% of correct answer rate. The recent work presented in [MT08] is inspired by the 
previous system. It extracts standard description of blobs by simple morphological 
measurements and targets real-time traffic monitoring in highways. Its performance is not clear 
as it reports results for different confidence levels. Another recent work is described in 
[HYCH06], relying on two description variables, the size, normalized by the lane width 
previously recovered from the scene, and the “linearity” measuring the dispersion of boundary 
pixels around a straight line. Vehicle classes are represented by a few templates. A road user is 
classified by computing its average distance to the templates of a class. It reports accuracy 
above 90% for four classes. Although the work presented in [ZCHT07] is called unsupervised by 
its authors, using k-means, it implicitly relies on prior knowledge of the road users present in the 
scene. The description variables are the velocity of the object area, the “compactness”, defined 
as the ratio of the object area over the square of the object perimeter, the time derivative of the 
area and the angle between the motion direction and the direction of the major axis of the 
shape. 

Finally, an idea common to most of the research presented in this section is to use the multiple 
detections provided by a tracking system at each frame. Integrating the instantaneous 
classifications, the systems achieve more robust performance (e.g. see [HYCH06] for some 
quantitative results that illustrate this point). 

3.Truck Classification
A classification module was developed for this project. It takes the road users' trajectories as 
input, and classifies them as either truck or non-truck (See Figure 1). In addition to camera 
calibration, off-line data comprises also a set of instances of truck and non-truck images, 
manually labeled off-line. These instances are used to build automatically a truck classifier, 
instead of manually specifying simple classification rules. The features used by the classifier 
rely on a model of the static elements of the scene, or background, to identify the shape and 
appearance of the road users. This will be explained in details in the next section. 

The classification module was developed to be simple and extensible, in order to be able to 
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adapt to various challenges and situations. The vehicles trajectories provided by the feature-
based method are only trajectories. The features tracked on a vehicle rarely cover the whole 
object. In order to differentiate road users, it is necessary to extract as many pixels of the object 
as possible, in order to analyze its shape and appearance. 

For this purpose, background subtraction was used. The background of the scene, i.e. the 
image of the static elements, is modeled using the well-known mixture of Gaussians [SG99]. 
Each pixel is independently modeled as a mixture of Gaussians and can be updated 
continuously, which is essential for a system that would operate continuously under changing 
conditions. For each frame, each pixel is matched to the Gaussians, among which the ones with 
the most importance and least variance constitute the background. An alternative more simple 
approach uses a simple background image obtained from the mixture of Gaussians model, and 
subtracts the current frame with it, using a suitable threshold. The connected components in the 
difference image constitute the foreground objects, or road users in movement (See Figure 2). 
The result is typically noisy, which is addressed by applying morphological operations.

Road users’ trajectories can be matched in each frame with the foreground objects to extract the 
description variables that will be used for classification. There are various types of variables, 
either related to the shape or the appearance of the foreground objects. As a starting point, the 
system was developed to use a moment-based representation of the object shape, also called 
contour [Bos05] (chapter 8 of [BK08]). The (p+q)th-order spatial moment of a foreground object 

is given by m p , q=∬ f x , y x p yqdxdy , for p,q = 0,1,2…, where f(x,y) = 1 for points inside the 
foreground object and zero elsewhere (e.g. respectively the white and black pixels in the right 
image of Figure 2). In images, the integrals are replaced by discrete sums. Particular low order 
moments are the size in pixels (zeroth moment) and the position of the centroid (first-order 
moment). The set of all spatial moments provides a complete description of the shape. 

Spatial moments are closely related to features such as dispersedness or compactness that 
have been used successfully in other works. To make these description variables more robust, 
they must be made invariant with respect to 2D transformations such as translation, rotation, 
reflection, and scaling. The central moments are translation-invariant: 
m p , q=∬ f x , y  x−x 

p
 y−y 

qdxdy , where x=m1,0/m0,0  and y=m0,1 /m0,0 . The normalized 

moments are scale-invariant p ,q=p ,q/0,0
 , where = pq2/2 . To achieve rotation- and 

reflection-invariance, the Hu moments {hi∣i=1. ..7}  can be finally computed as follows 

h1=2,00,2

h2=2,0−0,2
241,1

2

h3=3,0−31,2
232,1−0,3

2

h4=3,01,2
22,10,3

2

h5=3,0−31,23,01,23,0−31,2
2−32,10,3

32,1−0,32,10,333,01,2
2
−1,20,3
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h6=2,0−0,23,01,2
2−2,10,3

241,1 3,01,22,10,3

h7=32,1−0,32,10,333,01,2
2−2,10,3

2

−3,0−31,22,10,333,01,2
2
−2,10,3

2


Using a subset of these variables describes effectively the object shape. A classifier can now be 
built to distinguish trucks from other road users. Instead of the tedious, error-prone and sub-
optimal manual setting of rules, it is preferred to use machine learning techniques. The field of 
machine learning is concerned with building models of data from a given training dataset that 
can be used to predict results on other examples from the same distribution as the training 
dataset. This field is well researched and vast, and readers are referred to [DH00] for a 
complete and detailed overview. Among the different models and algorithms available in the 
literature, discriminative models were chosen. Decision trees were chosen in particular since 
they are simple, fast, and can be used as base classifiers in ensemble methods [Bre01]. 
Ensemble methods like Bagging and Boosting [Die00] are newer techniques that aggregate 
multiple randomized simple, or weak, classifiers to boost performance. Ensemble methods 
feature among the best performing machine learning systems, including for computer vision 
applications [VJ01]. 

In an off-line phase, a classifier is trained on manually labeled data, with examples of trucks and 
other road users. Once trained, a classifier returns a prediction for each instantaneous 
foreground shape. A road user will therefore have many classifications as it moves through the 
scene, up to one for each frame in which it appears. These classifications are integrated 
temporally to improve robustness; a road user will be classified as a truck if the classifier 
predicted that the shape was the shape of a truck in more than nDetections frames. 

4.Experimental Results
The system was developed using the open source computer vision library OpenCV [BK08]. 
Another program was developed to manually track and classify road users to provide training 
and testing data for the truck classifier (See Figure 3). 

The data used to test the system comes from the datasets collected by the Federal Highway 
Administration for the Next Generation SIMulation project (NGSIM), made available online2. The 
US highway 101 dataset was chosen for the experiments; the data, i.e. the video data and the 
road users’ trajectories, was collected in a long corridor covered by eight cameras (See 
Figure 4). Unfortunately, the calibration data provided by the maintainers of the project proved 
impossible to use. This seems to have little impact on the performance as the videos were 
captured from very high above the ground. 

The dataset consists of three periods of 15 minutes in the morning: period 1 from 7:50am to 
8:05am, period 2 from 8:05am to 8:20 and period 3 from 8:20 to 8:35. A small set of road users 
of the subset camera 8 / period 1 was manually classified. Tests were made on other parts of 
the dataset, for the same camera and different periods, as well as for the data covered by the 
other cameras, including sections with significant perspective variations and different road 
user’s appearance. In the video data collected from cameras 5 to 8, the road users are moving 

2 http://www.ngsim.fhwa.dot.gov

7



closer to the cameras; in the video collected by the rest of the cameras, 1 to 4, the road users 
are moving further away from the cameras. 

The random forests classifier was chosen for its high accuracy [Bre01] and availability in 
OpenCV. It is compared to its base classifier, a simple decision tree. For each road user 
detected and tracked by the system, the classification module indicates whether it is a truck or 
not. This is therefore a binary classification problem where the classes are {non-truck, truck}. 
The number of classes is C=2. The number of instances is N. The results are based on the 
confusion matrix; the element mi,j of the confusion matrix is the number of instances of class i 
that are classified in class j by the system. In the case of binary classification, where truck is the 
“positive” class to be detected, mtruck,truck is the number of true positive, mnon-truck,truck is the number 
of false positives or false alarms, and mtruck,non-truck is the number of false negatives or missed 
detections. The following performance measures are computed from the confusion matrix: the 
total accuracy, the precision and recall for each class. The formulas are

Accuracy=
∑i=1
i=Cmi ,i
N

Precisionc=
mc , c

∑i=1
i=Cmi , c

for class c

Recall c=
mc ,c

∑i=1
i=C mc ,i

for class c

(2)

Cross validation is a standard technique to estimate the performance of a classifier, more robust 
than simply splitting the dataset in a training and a testing dataset. K-fold cross-validation 
consists in splitting the dataset in K subsets and in testing on each subset a classifier trained on 
the K-1 other subsets. As each instance is classified once, the confusion matrix can be filled for 
all instances and the performance indicators computed. When the number of folds K is the 
number of instances, it is called leave-one-out cross-validation. The results of leave-one-out 
cross-validation for the training dataset, for instantaneous frame detections, are presented in 
Table 1. Two sets of description variables for object shapes are tested: the full set of all 
moments, and a smaller subset consisting only of the Hu moments, called respectively “full” and 
“small” in the following tables and figures (both sets are supplemented with the ratio of the 
number of object pixels divided by the pixel size of its bounding box). As expected, random 
forests appear to perform better than decision trees, for most performance measures. The 
conclusions are not so clear for the sets of description variables. The full set provides better 
performance for random forests for all performance measures. Regarding the results for the 
decision trees, the small set provides better total accuracy, but a much degraded Recall for 
trucks (i.e. many non-trucks are incorrectly classified as trucks). 

The next results are obtained by training a classifier on labeled instances from the subset 
camera 8 / period 1, and by testing it on the other subsets covered by the same camera 8, 
period 2 and 3, as well as the subsets camera 4 / all periods (to investigate the effect of a very 
different perspective). The sizes of the sets are reported in Table 2. In the classification process, 
some special processing was added to deal with special conditions. In congested situations, 
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foreground objects tend to merge and the individual object shapes cannot be obtained through 
background subtraction. To avoid numerous false alarms in such situations, slow road users are 
therefore classified as non-truck. In any case, signal priority cannot have much impact in such 
traffic conditions. 

Since there is a detection threshold nDetections to set, there is a tradeoff between recall and 
precision, between detecting as many trucks as possible while keeping the false alarms as low 
as possible. This tradeoff can be captured by computing the receiver operating characteristic 
(ROC). The ROC curve is the plot of Recalltruck, also called true positive rate, versus 1-Recallnon-

truck, also called false alarm rate, for various settings of the classifier, obtained for example in our 
case by changing the parameter nDetections. The best possible prediction method would yield a 
point in the upper left corner of the ROC space, at coordinate (0,1), representing 100% recall for 
the truck class, i.e. no missed trucks, and 100% recall for the non-truck class, i.e. no missed 
non-trucks that would constitute false alarms. A completely random guess, like flipping coins, 
would give a point along a diagonal line from the left bottom to the top right corners, also called 
line of no-discrimination. 

The ROC curves for the subsets camera 4 and 8, for all periods, are displayed in Figure 5. The 
operation mode should be chosen depending on the application. In this work, a false alarm rate 
of 0.5% was used in the experiments carried out to test various truck signal priority strategies, 
described in the next sections. The maximum Recalltruck such that the false alarm rates remains 
below 0.5% is reported in Table 3. From these results, it is clear that the full set of description 
variables yields better results, for both classifiers. The surprising part is that the best performing 
classifier changes with the camera, i.e. the camera angle. The reason may be that the simple 
decision tree generalizes better to unseen data. Note that the performance on camera 8 / 
period 1 comes from the fact that part of it is used to train the classifier, and is not indicative of 
general accuracy, as can be seen in the other results (it is still interesting as only a small part of 
the subset is labeled for training). The good news for the application is that the recall reaches a 
relatively high recall for trucks, from 78% to 95%, with a false alarm rate below the 0.5% value 
used for the system simulation.

5.Conclusion and Future Work
This paper has presented the development of a prototype system for the detection and tracking 
of trucks using video sensors, designed for a larger truck signal priority system. The prototype 
video-based truck detection system is tested on real world data from the NGSIM project. The 
truck detection rate reaches a relatively high recall for trucks, from 78% to 95%, with a false 
alarm rate below the 0.5% value (used to test different scenarios in a traffic simulation not 
presented in this report). This shows that the performance required for effective truck signal 
priority is reached or within reach of automated video-based sensors. 

The system can still be further improved. The classification module should be generalized to 
classify all the types of road users, using more varied features, especially based on the 
appearance, which will make the system more robust to particular conditions. Road users' size 
or volume is obtained from the features, but should be improved as the features may not cover 
completely the road users. Such improvements will enable the processing of more challenging 
data.
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Another area is the development of a multi-camera system to cover larger areas, for example to 
track trucks along a corridor for signal priority and other services, or to better estimate the road 
users' height if the field of views of different cameras overlap (along the third dimension 
orthogonal to the ground considered as a plane). 
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Tables

Non-truck Class Truck Class

Classifier Variables Accuracy Recall Precision Recall Precision

Decision 
Tree

Full 72.06 73.32 85.62 68.8 50.52

Small 74.87 85.82 80.42 47.17 56.82

Random 
Forest

Full 82.02 +/-0.39 89.20 +/- 0.41 86.19 +/- 0.34 63.86 +/- 1.04 70.06 +/- 0.83

Small 74.99 +/-0.51 87.19 +/- 0.53 79.78 +/- 0.34 44.13 +/- 1.10 57.68 +/- 1.21

Table 1 Performance results (in percentage) for a decision tree and a random forest classifier,  
for the full or small set of description variables, on the training dataset (748 shape instances). 
The leave-one-out cross-validation is run 100 times for the random forests classifier since its 
training algorithm is randomized, the average and standard deviation are provided for all 
measures.

Camera Period Number of trucks Number of non-truck road users

4 1 (7:50 to 8:05) 55 2115

2 (8:05 to 8:20) 46 1972

3 (7:20 to 8:35) 43 1874

8 1 (7:50 to 8:05) 57 2115

2 (8:05 to 8:20) 42 1972

3 (7:20 to 8:35) 39 1874

Table 2 Number of truck and non-truck instances in the sets used for testing.
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Camera Period Classifier Variables nDetections Recalltruck

4 1 (7:50 to 8:05)
Decision Tree

Full 54 78.18

Small 122 3.64

Random Forest
Full 26 74.55

Small 76 3.64

2 (8:05 to 8:20)
Decision Tree

Full 33 91.30

Small 126 23.91

Random Forest
Full 17 80.43

Small 83 23.91

3 (7:20 to 8:35)
Decision Tree

Full 26 95.35

Small 130 25.58

Random Forest
Full 12 88.37

Small 86 18.60

8 1 (7:50 to 8:05)
Decision Tree

Full 28 98.25

Small 104 36.84

Random Forest
Full 13 100

Small 58 64.91

2 (8:05 to 8:20)
Decision Tree

Full 44 78.57

Small 117 23.81

Random Forest
Full 19 78.57

Small 73 40.48

3 (7:20 to 8:35)
Decision Tree

Full 29 92.31

Small 111 38.46

Random Forest
Full 12 94.87

Small 89 10.26

Table 3 Maximum Recalltruck (in percentage) and corresponding parameter value nDetections (in 
frames), while keeping the false alarm rate below 0.5%, for the classifiers decision tree (DT) 
and random forest (RF), with full and small variable sets, for data subsets camera 4 and 8, 
periods 1 to 3.
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Figures

Figure 1 Overview of the system. Grayed boxes represent system components that are 
computed off-line, the classification module is composed of the elements on a yellow 
background.

Figure 2 Example of background subtraction. From left to right, the current frame, the 
background image and the resulting foreground image are displayed.
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Figure 3 Interface of the program for road user manual tracking and labeling. This data is then 
used for training and testing (as ground truth).

Figure 4 US highway 101 NGSIM dataset and the camera coverage. “10 UCP” points at the 
camera location.
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Figure 5 ROC Curve for the various subsets, for the two classifiers random forests (RF) and 
decision trees (DT), and the two variables sets (full and small), trained on labeled instances of 
the subset camera 8 / period 1. The first column corresponds to camera 4, the second to 
camera 8; the rows correspond respectively from top to bottom to period 1 from 7:50am to 
8:05am, period 2 from 8:05am to 8:20 and period 3 from 8:20 to 8:35.
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