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ABSTRACT 

Prediction models are one of the vital components in pavement management systems. Along 
with decision trees, the prediction models are ultimately used to set the priorities for 
maintenance planning and budget allocations at the network level. Within a pavement 
management system, raw performance data is often converted to aggregated performance 
indices, such as a riding comfort index to quantify the road roughness and a surface distress 
index to quantify the extent and severity of surface distresses. A historical database with 
pavement performance indices can be used as a source for the development of prediction 
models. However, in some cases the database may suffer from incomplete data. In addition to 
the historical performance data, the age of the pavement or the date of the last major 
rehabilitation is required to develop a relationship between the performance data and the age of 
the pavement. 

This paper provides a methodology to develop performance prediction models with the absence 
of the construction or rehabilitation dates. The models developed use the limited historical data 
and accounts for different parameters such as pavement thickness, traffic, and subgrade 
classes. The pavement construction dates, or age of the pavement, were incorporated into the 
proposed model and were constrained based on local experience and engineering judgment. A 
linear programming technique was employed to develop the performance prediction models. 
The approach presented in this paper can be expanded to additional parameters and can easily 
be adapted to different agencies based on their local experience. 
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INTRODUCTION 

Pavement management systems have been extensively used by municipalities across Canada 
for the last two decades. As a result, many of these municipalities have multiple years of 
performance data from condition surveys. The three most common performance data recorded 
for municipalities are roughness, distress, and deflection. The raw data is often converted to a 
performance indicator (PI) which is used to qualify the pavement performance. It is expected 
that the pavement will deteriorate over time and that this deterioration can be modeled through 
the performance indicators. This paper presents a methodology to use the historical roughness 
and distress performance indicators to develop prediction models for asphalt pavements the 
City of Burnaby, British Columbia. 

Riding Comfort index (RCI) 

One of the primary operating characteristics of a road, from the user’s perspective, is the 
roughness, which represents the traveling public’s opinion of the smoothness and hence, the 
quality of service provided by a pavement. The negative consequences associated with 
pavements with poor ride characteristics include increased: 

• vehicle maintenance costs 

• decreased vehicle life 

•  increased fuel consumption 

• increased travel time 

• vehicle operator discomfort 

• safety hazards (in extreme cases) 
 
For years, the City of Burnaby, along with many other municipalities across Canada, have 
undertaken data collection surveys to record roughness and distress data across their road 
network.  

The ride characteristics of a pavement can be objectively measured by commercially available 
equipment, which measures the longitudinal profile of the pavement surface. The profile data is 
then used to calculate an International Roughness Index (IRI) reported at 30-metre intervals. 
Roughness measurements are correlated to an assessment of ride quality as determined by the 
ratings of a group of representative users of the pavements. This ride quality indicator is the 
Riding Comfort Index (RCI). The IRI, and ultimately the RCI, for the pavement section is then 
based on the RCI for all 30-metre stations included in the section. Theoretically, the RCI can 
vary from 0.0 to 100, where 0.0 is considered an extremely rough surface and 100 is an 
extremely smooth surface. 

Surface distress index (SDI): 

The Surface Distress Index (SDI) is a measure of physical pavement cracking, deformations 
and surface defects, collectively referred to as distresses. This provides an excellent indicator of 
material deficiency, rate of deterioration, structural adequacy, environmental and soil type 
problems. The SDI is, therefore, a key indicator of pavement performance, which may be used 
to monitor the condition of the network. 

For the City of Burnaby, 13 types of distresses are rated in terms of their severity and extent. 
Similar to the roughness data, the distress data is recorded at each 30-metre stations within 
each section of the network. The distress ratings are transformed from a 0.0 to 100 scale for 
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each of the thirteen distresses, which are further combined using distress-specific weighting 
factors to general an overall SDI for each station. A sectional SDI score is then computed based 
on these stational SDI scores. The distresses surveyed include: 

• Patching 

• Rippling & Shoving 

• Raveling/Streaking 

• Flushing & Bleeding 

• Distortion 

• Excessive Crown 

• Progressive Edge Cracking 

• Alligator Cracking 

• Potholes 

• Block/Map Cracking 

• Longitudinal Cracking 

• Transverse Cracking 

• Wheel Track Rutting 

 

The SDI can vary between 0.0 and 100.0. A value of 100.0 indicates that the pavement surface 
is free of surface distress defects. Normally, an SDI of 60 to 70 is viewed as the critical range. 
Scores above this range generally indicate that any distresses that might exist are not severe or 
extensive in nature, while a score below this range generally indicate that significant distresses 
exist on the section. A section with an SDI below this range may experience an accelerated 
deterioration of performance due to rapid ingress of moisture, rapid propagation of cracking, 
increased susceptibility to freeze / thaw cycles or other factors. 

MODELING APPROACH 

Several mathematical models have been used in the past to describe pavement performance 
(1, 2). These models varied from mechanistic-empirical, where a response parameter is related 
to structural or functional deterioration through regression, to subjective models where 
experience may be captured through transition matrix such the one used for Markovian 
models(3). This study combines the two approaches historically used in development of the 
deterioration models to establish new evolved models that are developed mainly based on 
mathematical regression and adopted through the use of local historical data and engineering 
experience. 

A sigmoidal (i.e. S-shaped) form is adopted in this study to describe the pavement performance 
over the age. This model form has a greater degree of flexibility in describing the deterioration of 
pavement performance as it allows the models produced to be concave, convex, S-shaped, or 
almost linear. The following is the standard sigmoidal model form used in this study: 
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In this model, 

• O represents the initial condition of the pavement, immediately after rehabilitation (at age 
zero) 

• PI is the performance index and could be the RCI or SDI parameter 

• Age is the number of years since the last major rehabilitation or construction activity 

• Coefficients A, B, and C are the model parameters to be calibrated 
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Although it is expected that there may be some differences in the initial PI of the rehabilitated 
pavement section based on the type and thickness of the rehabilitation activity, the initial 
condition (performance at age 0) for all rehabilitation activities was assumed to have the same 
value, which is the maximum possible PI value of 100.0 since a new surface is initially expected 
to be free of distress and have the highest ride comfort level. It should be noted the RCI model, 
which converts IRI to RCI, has been locally calibrated such that a score of 100 represents an 
optimal or acceptable roughness level. 

DATA AGGREGATION 

The data used in this study was extracted from the pavement management system for the City 
of Burnaby. This pavement management database contains historical data collected over a 
span of 18 years. Not all sections were surveyed during each data collection survey and 
surveys were not collected on an annual basis. It is recommended that condition surveys for 
roughness and distress be collected every 3 years, with either one-third of the network being 
collected every year or on a recurring 3-year basis for the entire network. 

As previously indicated, roughness and distress measurements are collected using automated 
data collection and then converted into RCI and SDI scores. Table 1 shows the total number of 
sections that have been extracted from the system with observations. The table also indicates 
how many sections have records for each performance index, as well as, the number of 
observations per section. For example, there are 4,176 sections that have RCI performance 
data, of which, 74 sections have 4 years of RCI performance data. 

Table 1: Number of Sections with Observations by PI 

PI 
No. Sections with 

Observations 

No. of Observations per Section 

1 2 3 4 5 

RCI 4,176 111 1,355 2,630 74 6 

SDI 4,174 109 1,348 2,636 76 5 

 

In order to prepare a dataset that can be used for the models development, several steps are 
needed to filter the data and remove outliers and unrealistic records. The first step is to remove 
sections that have only one observation since they can not be used to formulate a performance 
trend. Since it is rare to have sections for long periods without any treatment or rehabilitation 
activity, sections with two or more observations were further investigated and filtered out if the 
span between consecutive observations is too long. In addition with the absence of any 
construction historical records, sections that do not have a deteriorating trend were removed 
from the dataset that was used for model development, as sections are expected to deteriorate 
over time. It is assumed that any increase in performance is a result of a rehabilitation-type 
activity. 

MODEL DEVELOPMENT 

Design of Experiment 

In order to estimate the future rehabilitation requirements of a pavement network, it is necessary 
to formulate a series of performance curves that model RCI and SDI. The rate of deterioration 
depends on many factors, including, but not limited to: 
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• Environment/climate 

• Pavement type 

• Traffic volume 

• Quality of materials used 

• Construction quality 

• Type of treatment strategy (overlay vs. reconstruction) 

• Subgrade strength 

However, it can be demonstrated that the principal factors are traffic loadings, properties and 
thickness of pavement structure layers, and subgrade strength. Therefore, there is a need 
develop deterioration models specific for each condition and class combination. For this study, 
three parameters were selected to classify the pavement condition: 

• Thickness – 3 levels (thin, medium, thick) based on equivalent granular thickness (EGT) 

• Traffic – 3 levels (low, medium, high) based on average annual daily traffic (AADT) 

• Subgrade – 2 levels (weak, strong) based on local knowledge of soil properties 
 

Table 2 shows the number of sections that have been used in the model development for each 
combination of the three performance classes after data aggregation and filtering. These 
sections shown in Table 2 are for the flexible pavement type only as these represent the vast 
majority of the road network. 

Table 2: Number of Sections with Records for Model Performance Classes 
  

Thickness Subgrade 
Traffic 

  Low Medium High 
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RCI 

Thin 
Weak 49 32 292 

Strong 72 152 111 

Medium 
Weak 21 14 63 

Strong 30 68 132 

Thick 
Weak 7 6 54 

Strong 15 27 123 

SDI 

Thin 
Weak 45 23 321 

Strong 84 161 141 

Medium 
Weak 22 21 64 

Strong 47 67 124 

Thick 
Weak 7 6 58 

Strong 18 17 95 

 

Expected Service Life 

The service life is defined as the number of years between the implementation of the 
rehabilitation activity and the age at which the pavement condition reaches its rehabilitation 
trigger level, which, in this case, is defined to be PI of 60%. That is to say, once a PI reaches 
60, it is expected to undergo some form of major rehabilitation, such as a mill and overlay. 
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In order to develop prediction models for each class combination shown in Table 2, an expected 
range of service life needs to be established in advance. This expected service life represents 
the incorporation of experience and engineering judgment into the prediction models. For this 
study it was assumed that the expected service life for asphalt sections with thick pavement, low 
traffic volume and a strong subgrade condition would be approximately 20-30 years (model 13 
as shown in Table 3) representing the best case condition for a pavement. That is to say, that it 
will be 20 to 30 years before a pavement with these characteristics will require a major 
rehabilitation, which is reasonable in a municipal environment especially on local (i.e., low 
volume) roads. At the other extreme, an asphalt section with a thin pavement structure, high 
traffic volume and weak subgrade may require major rehabilitation as early as 7 to 10 years 
given that it has been under-designed based on traffic loading and subgrade strength. As 
compared to a typical design, this would essentially be considered a premature failure.  

It should be noted that the majority of section falls in the “medium” range as would be expected. 
However, service lives are developed for all cases, including the over-designed (best case) and 
under-designed (worst case) scenarios. 

Accordingly, different service lives for model combinations were estimated and referenced to the 
best condition as shown in Table 3. It should be noted that these values for maximum and 
minimum expected service life are flexible and can be tailored to each agency practice and 
needs. 

Table 3: Expected Service Life for Each Model Class Combination 

Model ID Thickness Traffic Subgrade 

Expected Service 
Life to Reach 

Trigger Level of 60 

Min Max 

1 Thin Low Strong 14 21 

2 Thin Medium Strong 12 18 

3 Thin High Strong 10 15 

4 Thin Low Weak 10 15 

5 Thin Medium Weak 8 12 

6 Thin High Weak 7 10 

7 Medium Low Strong 17 26 

8 Medium Medium Strong 14 22 

9 Medium High Strong 12 18 

10 Medium Low Weak 12 18 

11 Medium Medium Weak 10 15 

12 Medium High Weak 8 12 

13 Thick Low Strong 20 30 

14 Thick Medium Strong 17 26 

15 Thick High Strong 14 21 

16 Thick Low Weak 14 21 

17 Thick Medium Weak 12 18 

18 Thick High Weak 10 15 

 

Model Implementation and Optimization 

Initial seeds for the coefficients A, B and C were used to produce a preliminary deterioration 
model, which were based on engineering judgment related to the initial performance of the 
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pavement. For example, roughness may initially stay at a high level for a couple of years before 
it starts to deteriorate. On the other hand, it is expected that surface distress will start to develop 
within the first couple of years after rehabilitation. 

This step was performed for each section in the database. As previously indicated, the trigger 
level for major rehabilitation was assumed to be 60% for all performance indices. Accordingly it 
is expected that each of the 18 prediction models shown in Table 3 will reach the rehabilitation 
trigger level within its anticipated range of service life. 

The next step was to calculate the error between the measured observations and predicted 
conditions using the initial prediction model coefficients as shown in Figure 1. The least square 
error was calculated for each observation and summed for each section as shown in the 
following equation: 

                                                                 

where xi is the measured value and yi is the predicted value at the same age. The least squares 
fitting is a mathematical procedure for finding the best-fitting curve to a given set of points by 
minimizing the sum of the squares of the offsets, or residuals, of the points from the curve (4). 

Excel solver which employs linear programming optimization technique was used to minimize 
the error between measured and predicted performance index for each section. The 
optimization process was constrained so that expected service life for each section should fall 
within the expected range as shown in Table 3. Figure 2 shows the final RCI model for one 
selected section from the database after running optimization procedure. 

 

Figure 1: Prediction Models before Optimization 
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Figure 2: Prediction Models after Optimization 

 
 
Deterioration Model Results 

Optimization to minimize the error in prediction was applied for each section and accordingly a 
value for A, B and C coefficients were obtained which represent the most representative 
prediction model that characterize the change in performance over the pavement life. The 
coefficients were grouped and averaged for each model class combination. The previous steps 
were applied to both performance indices presented in this study: RCI and SDI. 

Due to the lack of data near the end of the pavement life, the models resulted in performance 
classes not reaching the terminal value of 20 – a point at which total reconstruction is expected. 
As such the models were modified after the trigger level such that their rate of deterioration 
remained constant after the expected rehabilitation trigger level. A tangent was drawn once the 
performance curve reached the trigger level. Figure 3 and Figure 4 show the final developed 
RCI and SDI models, respectively, for the City of Burnaby 
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Figure 3: Final RCI Models for each Class Combination 
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Figure 4: Final SDI Models for each Class Combination 
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FUTURE ENHANCEMENTS 

The predictions models are based on the assumption that the current performance classification 
is applicable to all historical records. In reality, there may be cases where traffic volumes have 
increased such that a particular section has moved from one performance class level to 
another. However, filtering these sections from the analysis would further reduce the number of 
sections being used for modeling. Moreover, these cases are most likely to represent the lower 
end of the service life range, that is to say if a section has seen a significant increase in traffic 
volume, it will likely have a higher rate of deterioration, thereby representing the lower end of the 
service life range. 

It’s important to note that prediction models are intended to represent the “average” or “typical” 
conditions. Prediction models are not representative of the super-achievers (pavements that far 
exceed their expected service life) or the premature failures, which are often due to construction 
or material quality issues. 

Due to the sections being classified into different performance classes, these prediction models 
can easily be expanded to include other factors, such as climate or environmental zones. They 
can also be expanded to include other performance indicators or other performance data stored 
within the pavement management system. 

The key to model development such as this is the pavement management system itself: how 
well it is maintained and how often the data is collected and/or updated. Any data not captured 
in the database, can then not be captured in the modeling. 

CONCLUSIONS 

This paper has provided an approach to prediction model development using data from an 
existing pavement management system. 

• Through data aggregation and filtering of the pavement management system data, 
observations were grouped into 18 performance classes 

• Performance classes represent various levels of pavement thickness, traffic, and 
subgrade condition 

• Based on engineering judgment and local experience, expected ranges of service were 
developed for each performance class 

• A sigmoidal model was used due to its flexibility in terms of describing the deterioration 
of pavement performance 

• Initial sigmoidal model coefficients were developed based on engineering judgment and 
local experience 

• Model coefficients were developed for each section in the database and the least 
squares error was calculate and summed for each section 

• A linear programming optimization technique was employed to minimize the error for 
each section 

• The optimization included a constraint to limit the service life to the pre-defined expected 
service lives for each performance class 

• The various coefficients were evaluated to determine the most representative 
coefficients for each performance class 
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